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ABSTRACT
In modeling the interior of cells by simulating a reaction–diffusion master equation over a grid of compartments, one employs the
assumption that the copy numbers of various chemical species are small, discrete quantities. We show that, in this case, textbook expres-
sions for the change in Gibbs free energy accompanying a chemical reaction or diffusion between adjacent compartments are inaccu-
rate. We derive exact expressions for these free energy changes for the case of discrete copy numbers and show how these expressions
reduce to traditional expressions under a series of successive approximations leveraging the relative sizes of the stoichiometric coefficients
and the copy numbers of the solutes and solvent. Numerical results are presented to corroborate the claim that if the copy numbers
are treated as discrete quantities, then only these more accurate expressions lead to correct behavior. Thus, the newly derived expres-
sions are critical for correctly computing entropy production in mesoscopic simulations based on the reaction–diffusion master equation
formalism.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5140980., s

I. INTRODUCTION
In recent years, the coarse-grained computational modeling

of intracellular environments has enjoyed significant advances. An
important paradigm shared by many such models is to treat the
evolution of reacting chemical species’ copy numbers and spatial
distributions by simulating a reaction–diffusion master equation
(RDME).1 In this approach, the system volume is divided into com-
partments, each with local values of the copy numbers and chemical
potentials of the different chemical species (Fig. 1). The RDME is
a differential equation describing the evolution of the probability
P(N, t) of observing the vector of copy numbers N = {Ni,A}i∈L,A∈Ω
of chemical species i in compartment A at time t, where L is the set
of solute species and Ω is the set of compartments in the system. The
RDME can be written schematically as

dP(N, t)
dt

= (M̂ + D̂)P(N, t), (1)

where M̂ and D̂ represent operators describing chemical reac-
tions and inter-compartment diffusion, respectively.2 An in-depth
description of the RDME approach can be found in Refs. 3 and 4,
where the forms of the operators are discussed. Rather than directly
solving Eq. (1), one often simulates trajectories of the vector N
obeying the stochastic dynamics encoded in the RDME using a
variant of the Gillespie algorithm.5 The sizes of the compartments
are commonly determined by the Kuramoto lengths, the mean free
diffusional path for a species before it participates in a chemical
reaction. Within each compartment, the spatial distributions of the
reacting species are assumed to be homogeneous, allowing the use
of mass-action kinetics with the compartment’s local values of the
species’ concentrations to describe the stochastic chemical reac-
tion propensities. Molecules can additionally jump between adja-
cent compartments in “diffusion events” (whose propensities also
depend on the compartments’ local concentrations of species) to
give rise to concentration gradients on the scale of the compartment
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FIG. 1. An example of a cubic compartment grid used in the simulation of a RDME.
Each compartment, labeled with letters A, B, . . ., has local values of the quantities
NR, NG, referring to the copy numbers of the red and green molecules in the com-
partment, and of μR, μG, referring to the chemical potentials of those molecules.
Molecules can react with each other within compartments (long dashed arrow), as
well as hop between adjacent compartments, representing diffusion (short dashed
arrow).

length. This modeling approach is appropriate when the Kuramoto
length is small compared to the system size (i.e., the assumption
of homogeneity over the system volume fails), yet large compared
to the intermolecular distance scale.1 Examples of simulation plat-
forms based on such an approach include Virtual Cell,6,7 lattice
microbes,8,9 MesoRD,10 MEDYAN (Mechanochemical Dynamics of
Active Networks),11,12 and others.13–17

One important aspect of simulating non-equilibrium biological
systems is the computation of thermodynamic forces that drive the
observed flux on the network of chemical reactions.18–20 Determin-
ing these forces can allow for the quantification of entropy produc-
tion in chemically reactive systems.21,22 In several research groups,
measuring entropy production in biological active matter has been
a recent goal.23,24 For instance, in recent work, we quantified the
entropy production rates of self-organizing non-equilibrium acto-
myosin networks in MEDYAN using the expressions derived here as
a first step.12 The ability to measure dissipation in active matter sys-
tems will allow us to test the applicability of different physical orga-
nizing principles relating the production of entropy to the likelihood
of observing certain trajectories.25,26 For isothermal, isobaric, chem-
ically reactive solutions, which include most mesoscopic biological
systems, measuring the total entropy production amounts to deter-
mining the change in Gibbs free energy that accompanies chemical
reactions and diffusion down concentration gradients.27–29 A ubiq-
uitous textbook expression for the change in Gibbs free energy G
accompanying a chemical reaction is

ΔG = kBT logKeq + kBT logQ, (2)

where Keq is the equilibrium constant, Q is the reaction quotient (we
give definitions of these quantities below), kB is Boltzmann’s con-
stant, and T is the temperature.30–35 At equilibrium, Q = K−1

eq , and
as a result, ΔG = 0. However, in this paper, we argue that Eq. (2)
is a biased approximation to the exact value of ΔG accompanying a
chemical reaction that holds when the copy numbers of the react-
ing molecules are large, such as on the order of Avogadro’s number.
When the system is small, such as when copy numbers are on the

order of 100 as is often the case in RDME simulations of intracellular
environments, thermodynamic expressions such as Eq. (2) require
corrections.36,37

As a simple motivating example, consider a mixture of an even
total number of two chemical species, red and green, which inter-
convert at equal rates. At equilibrium, the copy numbers of these
molecules will be equal, and Q = K−1

eq = 1. Now, if a reaction were to
occur at equilibrium to produce one additional red molecule and to
eliminate one green molecule. Then we would expect that the Gibbs
free energy of the system had increased, since we have left equi-
librium where the free energy attains its minimum. However, the
prediction of Eq. (2) is that ΔG = 0 for this reaction. The assump-
tion whose violation leads to Eq. (2) being incorrect is that the copy
number of chemical species is a continuous quantity. When these
variables are considered as discrete, a different expression for ΔG
must be used to give correct behavior.

Similarly, for diffusion between adjacent compartments, a com-
mon expression for the change in Gibbs free energy accompanying
the jump of a molecule i from compartment A with copy number
N i ,A to compartment B, where its copy number is N i ,B, is

ΔG = kBT log
Ni,B

Ni,A
. (3)

Imagine, however, we have a situation where N i ,A = N i ,B and a
molecule jumps from compartment A to B. The Gibbs free energy
should have increased since we have departed from the highest
entropy distribution of the molecules over the two compartments;
however, Eq. (3) will predict that ΔG = 0.

In this paper, we derive exact expressions for the change in
Gibbs free energy accompanying chemical reactions within com-
partments and diffusion events between compartments, and we
further show how these expressions relate to the familiar text-
book formulas [Eqs. (2) and (3)] through a series of approxi-
mations. We also discuss the assumptions involved in defining
the Gibbs free energy of a grid of homogeneously mixed com-
partments that can exchange energy and particles, such as that
used in a simulation of a RDME. Finally, we present numeri-
cal simulations using MEDYAN to demonstrate the need to use
these more exact expressions for ΔG in order to obtain sensible
results when copy numbers are treated as discrete variables. Only
these more exact expressions will give correct, unbiased behavior
when measuring entropy production in mesoscopic in silico stud-
ies of biological non-equilibrium systems that rely on the RDME
formalism.

II. METHODS
A. ΔG of reactions

Here, we make successive approximations to the formula for
ΔG accompanying a chemical reaction, and our notation reflects
the level of approximation in which certain quantities are being
used: when appropriate, we subscript quantities with a parenthe-
sized number, i.e., ΔG(0), where increasing numbers represent more
approximate versions. The symbol ̃ will indicate that the quan-
tities of chemical species are being represented by mole fractions
χi, rather than concentrations Ci. In this section, we treat the case
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that our system comprises a single closed compartment of a homo-
geneous dilute solution in which a chemical reaction has occurred,
and we derive an expression for ΔG. In this system, the number
of solvent molecules is fixed and the solute molecules participate
in chemical reactions, causing their copy numbers to change. In
Secs. II B and II C, we consider a system with multiple weakly
interacting compartments (which may, in general, comprise an
irregular grid rather than the regular Cartesian grid visualized in
Fig. 1), each of which contains a homogeneous solution with local
copy numbers of solvent and solutes and between which both sol-
vent and solutes can diffuse. The nearly exact result [Eq. (21)]
obtained in this section will also apply to those systems, as we
argue below.

Before restricting to the case of a single closed compartment,
we establish notation for properties of the chemical species in a
compartment grid. The chemical potential for species i in com-
partment A can be expressed as depending either upon the mole
fraction, χi ,A, or upon the concentration, Ci ,A, of that species in the
compartment,

μi,A = μ̃0
i (T, p) + kBT log χi,A = μ0

i (T, p) + kBT logCi,A, (4)

where kB is Boltzmann’s constant, μ̃0
i (T, p) is the standard state

chemical potential at temperature T and pressure p when working
with the dimensionless χi ,A, and μ0

i (T, p) is the same when work-
ing with Ci ,A. Ci ,A and χi ,A both play the role of the “composition
variable” leading to these different, yet equivalent expressions for
the chemical potential.38 We make the distinction between depen-
dence upon copy number and dependence upon concentration in
order to establish parameters that can be used in simulation, which
commonly works with copy numbers, based on those given in the
literature, which typically use units of concentration. Here, we make
the assumption of an ideal-dilute solution and neglect the coeffi-
cient of activity of the solute species.39 The mole fraction can be
written as

χi,A =
Ni,A

NA
=

Ni,A

∑j∈M Nj,A
, (5)

where NA is the total copy number of molecules in compartment A
and M is the set of all species including the solvent in the system.
Similarly, the concentration can be written as

Ci,A =
Ni,A

ΘA
, (6)

where

ΘA = NAvVA (7)

is a conversion factor, NAv is Avogadro’s number, and VA is the
compartment volume (we assume constant pressure and that the
fluctuations in volume are negligible for these liquid systems, allow-
ing the use of Gibbs free energy). Using Eqs. (4)–(6), we can
write40

μ̃0
i (T, p) = μ0

i (T, p) + kBT log
NA

ΘA
. (8)

Using standard arguments concerning thermodynamic exten-
sivity, it is possible to establish that the Gibbs free energy of the

solution in compartment A can be written as a weighted sum over
the chemical potentials of the species,

GA(NA) =∑
i∈M

Ni,Aμi,A(χi,A), (9)

where NA = {Ni,A}i∈M is the vector of species copy numbers N i ,A,
and where we have explicitly indicated the dependency of μi ,A upon
mole fraction χi ,A via Eq. (5).28,41 One may be concerned that Eq. (9)
fails to apply when the copy numbers of solutes are small. As
explained below, we make the assumption that boundary effects are
still negligible, which allows us to treat G as a first order homoge-
neous function of the number of copies of the system.37 This is the
necessary property to establish Eq. (9), so the small copy numbers of
solutes do not render this approach invalid. We rely on Eqs. (4) and
(9) to derive changes in Gibbs free energy accompanying chemical
reactions and inter-compartment diffusion.

Consider a reaction of the general form

ν1X1 + ν2X2 +⋯
k+
⇌
k−
υ1Y1 + υ2Y2 +⋯, (10)

where Xi represent reactants, Y j represent products, νi and υj are
stoichiometric coefficients, and the rate of reaction is k+ to the right
and k− to the left. We have dropped the subscript A indicating the
compartment in which the reaction takes place and now restrict to
the case that our system is a single compartment. When this reac-
tion has occurred once to the right, the copy numbers of reactants
have changed N i → N i − νi and those of the products have changed
N j → N j + υj. We calculate the change in Gibbs free energy accom-
panying this reaction by considering it as resulting from these finite,
discrete changes in copy numbers,37 not from infinitesimal changes.
Using Eqs. (4), (5), and (9), the Gibbs free energy before the reaction
has occurred can be written as

Ginitial
=∑

i∈R
Ni(μ̃0

i + kBT log
Ni

N
) +∑

j∈P
Nj(μ̃0

j + kBT log
Nj

N
)

+ Ns(μ̃0∗
s + kBT log

Ns

N
), (11)

where R is the set of reactants, P is the set of products, the subscript s
refers to the solvent, and where we have dropped the dependence of
the standard state chemical potential on T and p. μ̃0

i and μ̃0
j describe

the chemical potential at a reference concentration of the solute in
the solvent (also referred to as the solute standard state), whereas
μ̃0∗
s describes the chemical potential at a reference state of pure sol-

vent (also referred to as the solvent standard state).39 We assume
here, for simplicity and without loss of generality, that there are no
solute species that have not participated in the reaction (i.e., spec-
tator solute species). These species would also contribute terms to
Eq. (11), but when we subtract the initial from the final Gibbs free
energy, their inclusion would not yield a different result. The final
Gibbs free energy is

Gfinal
=∑

i∈R
(Ni − νi)(μ̃0

i + kBT log
Ni − νi
N + σ

)

+ ∑
j∈P
(Nj + υj)(μ̃0

j + kBT log
Nj + υj
N + σ

)

+ Ns(μ̃0∗
s + kBT log

Ns

N + σ
), (12)
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where

σ =∑
j∈P

υj −∑
i∈R

νi, (13)

which is the amount by which the total species copy number N has
changed. As described in Refs. 38 and 42, when σ ≠ 0, it is important
to account for the solvent species in the calculation of free energy
differences. This is because the free energy of the solvent, which
is the most abundant species in the reaction volume, will not be
the same after the reaction has taken place since its mole fraction
will change as N changes to N + σ. Neglecting the solvent species
when σ ≠ 0 leads to expressions for ΔG that are off by an amount
σkBT.38 Whereas the authors of Refs. 38 and 42 describe the appear-
ance of this erroneous term while formulating the Gibbs free energy
as a function of a continuous degree of advancement of reaction
dξ = −dN i/νi = dN j/υj, here we treat the extent of reaction as a dis-
crete quantity. In the limit that νi/N i→ 0, υj/N j→ 0 for each reactant
and product, the discrete case passes into the continuum case; how-
ever, under the assumption of small copy numbers, we do not satisfy
this limit. In Appendix A, we discuss further differences between
the continuum treatment and the discrete treatment, as well as the
relation to the Gibbs–Duhem equation.

After some algebra (using the fact that ∑i∈RN i + ∑j∈PN j
+ Ns = N), we can write the change in Gibbs free energy as

ΔG(0) = G
final
−Ginitial

= Δ̃G0 + kBT log∏
i∈R

(Ni − νi)Ni−νi

NNi
i

×∏
j∈P

(Nj + υj)Nj+υj

NNj
j

NN

(N + σ)N+σ , (14)

where

Δ̃G0 =∑
j∈P

υjμ̃0
j −∑

j∈R
νiμ̃0

i . (15)

Equation (14) is exact, but we would like to avoid specifying N in
simulation since the solvent is typically not modeled explicitly, as we
elaborate on in Sec. II B. We would also like to determine Δ̃G0 from
literature values of ΔG0. To these ends, we first rewrite Eq. (14) as

ΔG(0) = Δ̃G0 + kBT log Q̃(0) + kBT log
NN

(N + σ)N+σ , (16)

where

Q̃(0) =∏
i∈R

(Ni − νi)Ni−νi

NNi
i

∏
j∈P

(Nj + υj)Nj+υj

NNj
j

. (17)

From Eqs. (8) and (15), we can write

Δ̃G0 = ΔG0 + σkBT log
N
Θ

, (18)

where

ΔG0
=∑

j∈P
υjμ0

j −∑
j∈R

νiμ0
i . (19)

Inserting this into Eq. (16), we have

ΔG(0) = ΔG
0 + kBT log(

N
Θ
)
σ NN

(N + σ)N+σ + kBT log Q̃(0)

= ΔG0
− σkBT logΘ + kBT log(

N
N + σ

)
N+σ

+ kBT log Q̃(0).

(20)

We now make the approximation that N ≫ σ, which is certainly
reasonable for most realistic parameterizations of the compartment
grid (in the example of a 0.125 μm3 compartment filled with water,
N ∼ 109 while σ ∼ 1). With this, we can write the third term in
Eq. (20) as −σkBT,43 giving

ΔG(1) = ΔG
0
− σkBT logΘ − σkBT + kBT log Q̃(1), (21)

where Q̃(1) = Q̃(0) (we updated the subscript to indicate the use
of this quantity in a more approximate version of the formula for
ΔG). We recommend using Eq. (21) in simulation because it allows
us to incorporate literature values for ΔG0 and avoids specification
of N. To understand the term −σkBT in Eq. (21) and to under-
stand the relationship between Eqs. (21) and (16) and the textbook
expression for ΔG, we proceed by making further approximations
leveraging the large sizes of the solute copy numbers compared to
their stoichiometric coefficients. First, we rewrite Q̃(1) as

Q̃(1) =∏
i∈R
(1 −

νi
Ni
)
Ni

(Ni − νi)−νi∏
j∈P
(1 +

υj
Nj
)

Nj

(Nj + υj)υj . (22)

Assuming N i ≫ νi and N j ≫ υj, and using the limit

lim
x→∞
(1 ±

y
x
)
x
= e±y, (23)

we obtain

kBT log Q̃(1) ≈ σkBT + kBT log∏
i∈R
(Ni − νi)−νi∏

j∈P
(Nj + υj)υj . (24)

Inserting this into Eq. (21), canceling the term σkBT, gives

ΔG(2) = ΔG
0
− σkBT logΘ + kBT log Q̃(2), (25)

where

Q̃(2) =∏
i∈R
(Ni − νi)−νi∏

j∈P
(Nj + υj)υj . (26)

Finally, introducing

Q̃(3) =∏
i∈R

N−νii ∏
j∈P

Nυj
j (27)

and discarding terms in ΔG(2) that scale like νi
Ni

or vj

Nj
, we arrive at

ΔG(3) = ΔG
0
− σkBT logΘ + kBT log Q̃(3) = ΔG

0 + kBT logQ, (28)

where

Q =∏
i∈R

C−νii ∏
j∈P

Cυj
j . (29)

We see that Eq. (28) is obtained from Eq. (25) upon making the
approximations N i − νi ≈ N i and N j + υj ≈ N j. This final result in
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Eq. (28) is a standard textbook expression for the change in Gibbs
free energy.30–35

We, thus, have four expressions for ΔG of chemical reactions:

● Equation (14) for ΔG(0) is exact; however, it requires speci-
fying N.

● Equation (21) for ΔG(1) uses the approximation N ≫ σ. We
recommend the use of this expression because it is the most
exact expression for which we need not specify N, and since
it is written in terms of ΔG0, for which literature values can
be found.

● Equation (25) for ΔG(2) uses the approximations N i≫ νi and
N j ≫ υj.

● Equation (28) for ΔG(3) uses the approximations N i≫ νi and
N j ≫ υj again.

In Appendix B, we provide expressions for the accuracy of these
approximations. Note that, without specifying the copy number of
solvents Ns, we can only approximately compute changes in Gibbs
free energy, not the instantaneous Gibbs free energy of the system.
Typically, only the changes are of interest.

The definition of Gibbs free energy states that

ΔG = ΔH − TΔS. (30)

Comparing this expression to Eq. (28), we identify

ΔG0
= ΔH − TΔS0 (31)

and

−TΔSmix = kBT logQ, (32)

where ΔH is the enthalpy of reaction, and ΔS0 and ΔSmix represent
the changes in entropy due to the molecular conformations and the
translational motions, respectively,

ΔS = ΔS0 + ΔSmix. (33)

It is instructive to realize that the discrepancies between the vari-
ous expressions for ΔG are due to how the ΔSmix term in Eq. (33) is
written.

When employing any of the above expressions that involve
the logarithms of products of copy numbers that are raised to
the power of other copy numbers, we recommend splitting the
logarithm of products into a sum of logarithms as well as using
log xy = y log x in order to prevent overflow resulting from comput-
ing very large numbers. The results of this section do not assume
a system consisting of multiple, weakly interacting compartments,
which we discuss next.

B. Thermodynamics of a reaction–diffusion
compartment grid

Now that we have treated the scenario of a reaction event
occurring within a single compartment, we want to generalize
to the case of a grid of compartments. For this, we develop an
argument based on timescales that will allow us to track the copy
numbers of the reactive solutes while ignoring those of the inert
solvent. This is a necessary modeling feature due to the compu-
tational infeasibility of tracking the solvent copy numbers in each
compartment for long times. After describing the thermodynamic

framework for a grid of compartments, in Sec. II C, we derive the
change in G resulting from diffusion of solutes between adjacent
compartments.

In simulating a RDME, one commonly treats diffusion between
adjacent compartments and chemical reactions within compart-
ments using an augmented set of all species and reactions in the
system that treats species as distinct if they belong to separate com-
partments. Thus, if there are |L| reacting species and |Ω| compart-
ments, where L and Ω are the sets of solute species and compart-
ments, respectively, then in the augmented set, there are |L∥Ω|
species tracked. The number of reactions in the augmented system,
including r chemical reactions per compartment and roughly z|L|
diffusion events per compartments (where z is the assumed con-
stant number of neighbors of each compartment, ignoring boundary
compartments), is |Ω|(r + z|L|). This augmented set of species and
reactions is then simulated using the Gillespie algorithm in which
the reaction propensities are appropriately scaled according to the
compartment volumes.4

Crucial to the justification of this strategy to simulate a RDME
is the assumption that, within each compartment, the reacting
species can be considered homogeneously distributed so that one
may use mass-action kinetics to determine the propensities. This
assumption amounts to the condition that the timescale describing
diffusion within compartments, τD, is much less than the timescale
of chemical reactions, τC,

τD ≪ τC. (34)

This comparison should be done for each diffusing and reacting
species, and the timescale of the fastest reaction (taken as the inverse
of the propensity) for each species should be used. If the condi-
tion holds, then the process of intra-compartmental diffusion will
homogenize the solution faster than chemical reactions that occur,
so the assumption of mass-action kinetics holds. Let the dimen-
sion of the space be d, the length of the (here assumed cubical)
compartments be h, and the diffusion constant of a species be D.
Then,

τD ≈
h2

2dD
. (35)

The Kuramoto length is given by

lK =
√

2dDτC, (36)

so one can see that the condition τD ≪ τC is equivalent to the con-
dition lK ≫ h, and thus, one can enforce this condition by choos-
ing a smaller compartment size h. For fixed total volume, there
is a trade-off between h and |Ω|, which determines the size of
the augmented system and therefore the computational efficiency.
The timescale of intra-compartment diffusion τD is approximately
equal to the timescale of inter-compartment diffusion (which can
be given as the inverse of kD = D

h2 ), so a third way of describ-
ing this condition is that the frequency of jumps between adja-
cent compartments is much greater than the frequency of chemical
reactions inside the compartments, which can be checked empiri-
cally in simulation.1,4 We note that, in the literature, these expres-
sions may differ up to a constant coefficient depending on the
reference.
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In order to approximately describe the thermodynamics of this
system, we distinguish between the inert solvent and the dilute,
chemically reactive solutes. We assume here that the system is
impermeable to the flow of either kind of species to the exterior.
Within the system, all species are permeable (though local diffu-
sion constants may be incorporated for each species1). We treat the
solutes explicitly (at the level of their compartment copy numbers),
whereas we model the solvent implicitly through an appropriate
limit as in the steps leading to Eq. (21). To this end, we assume
the existence of a laboratory timescale τl whose purpose is to define
the temporal resolution of our measurements such that any changes
occurring on a timescale longer than τl will be measured. We assume
that τl is much longer than the timescale describing the local com-
partment fluctuations in the solvent copy numbers τs, yet shorter
than but on the order of the timescale describing diffusion of the
solutes τD. On this timescale τl, then in the time between the chemi-
cal reactions and diffusion events involving the solutes, the system is
quasi-equilibrated with respect to fluctuations involving the fast pro-
cess of solvent diffusion, and thus, the system may be assigned well-
defined values of Gibbs free energy.44 This hierarchy of timescales
can be written as

τs ≪ τl ≲ τD ≪ τC. (37)

Typical ratios of the diffusion constants for solute to solvent
are in the range of 1/10 to 1/100, placing τD/τs in the range
of 10–100.45

On the timescale τl, there is enough temporal resolution to
track the diffusion and chemical reactions of the solutes while allow-
ing averaging over the fluctuations of the solvent. To describe activ-
ity occurring over the large grid of compartments for extended
systems, we introduce new timescales τgx , where x refers to any
of the timescales defined above. If we hold the compartment size
h and the chemical concentrations fixed and add more compart-
ments to our system, the rates of solute diffusion events and chem-
ical reactions occurring anywhere in the system will scale as |Ω|,
the number of compartments, and thus, the timescales needed to
describe them scale as |Ω|−1, i.e., τgl ∼ τl/∣Ω∣. One might be con-
cerned that τgl will be less than τs for large systems, ostensibly vio-
lating our requirement that we will be able to average over the sol-
vent fluctuations to define quasi-equilibrated states. However, the
timescale of solvent fluctuations across the whole grid, τgs , will also
scale inversely with |Ω|, so the condition for being able to aver-
age over solvent fluctuations expressed in Eq. (37) does not ulti-
mately depend on the number of compartments. In other words,
for systems with many compartments, as long as Eq. (37) holds
for one compartment, we can be sure that our laboratory timescale
that describes the whole grid, τgl , will be short enough to describe
processes involving the solutes, while long enough to allow aver-
aging over the fluctuations of the solvent occurring locally in each
compartment.

We assume that the exterior of the system acts as a reservoir for
the thermodynamic variables p and T. The volume V of the system
also remains constant; however, under the assumption of the solvent
being an incompressible liquid, the change in quantity pV is approx-
imately zero, and for each reaction, the change in Gibbs free energy
is equal to that of the Helmholtz free energy. Thus, it is inconse-
quential whether we consider p or V to be reservoir variables, and

we choose p in order to speak of the Gibbs free energy of the sys-
tem. We can write the Gibbs free energy of the system as G(N, p, T),
where N = {{Ni,A}i∈M}A∈Ω represents the set of copy numbers of all
solute and solvent species in each compartment in the grid. We fur-
ther assume the compartments to be only weakly interacting, that is,
they can exchange energy and particles, but the interaction of the two
subsystems does not contribute a term to the Gibbs free energy of the
system. This is equivalent to assuming that the Gibbs free energy of
the compartments GA is linearly additive,

G = ∑
A∈Ω

GA, (38)

without any terms of the form GAB. To justify this, we first note that
the interaction free energy between two adjacent compartments will
primarily be due to the interaction of the solvent at the interface.
This interfacial free energy will, even for mesoscopically sized com-
partments, be small compared to the free energy due to the bulk of
the compartment. Furthermore, our main interest will be in changes
in the Gibbs free energy of the system due to solute diffusion between
compartments and chemical reactions, neither of which will signifi-
cantly affect the interfacial free energy, so all terms of the form GAB
will drop out of the expression for ΔG.

In our approach of averaging over fluctuations in the solvent
amounts and taking the limit that this average is large compared
to the copy numbers of the solutes, we are choosing to neglect the
changes in Gibbs free energy of the system owing to the solvent
fluctuations. We justify this with an argument that these fluctua-
tions are small compared to those resulting from the activity of the
solute molecules; it also arises out of necessity due to the computa-
tional expense of tracking the solvent fluctuations. On the laboratory
timescale τl, each compartment has an average copy number of sol-
vent molecules, Ns,A. The fluctuations in this quantity will have a
standard deviation on the order of Ns,A

1/2.44 As indicated previ-
ously [to arrive at Eq. (21)], we avoid specifying Ns,A by taking the
limit that it is much larger than the number of solute species, and
thus, fluctuations in this quantity do not matter when computing
nearly exact changes in the Gibbs free energy accompanying reac-
tions involving the solutes. We need to establish that the change
in Gibbs free energy of a compartment due to a fluctuation in the
solvent copy number on the order of Ns,A

1/2 is small compared to
the change in Gibbs free energy accompanying chemical reactions
and inter-compartment solute diffusion events and, thus, that the
fluctuations in this quantity are not outweighing the changes that
we are measuring. In Appendix C, we show that if the concentra-
tions of solutes are very different in the two compartments, then this
Gibbs free energy change is on the order of εNs,A

1/2kBT, where ε is
the ratio of solutes to solvent. We show that this quantity is typi-
cally much less in magnitude than the change in Gibbs free energy
accompanying a solute diffusion event. If the concentrations are
nearly equal, then the Gibbs free energy is on the order of εkBT
and is thus negligibly small. We make the modeling choice to ignore
these changes in the Gibbs free energy resulting from solvent fluc-
tuations because they tend to be small and they do not represent
the processes we are interested in, which involve the activity of the
solute molecules.

To summarize, we track the changes in the Gibbs free energy
of the system by computing a value of ΔG whenever a chemical
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reaction occurs within a compartment or a solute diffusion event
occurs between adjacent compartments. The timescales on which
these events occur are much slower than that of solvent equilibra-
tion, allowing for well-defined values of G between the events. By
the linear additivity of the compartments’ free energies, any change
in the free energy of a single compartment is equal to the change
in free energy of the whole system (i.e., ΔGA = ΔG). We assume
that the diffusion of the solvent only contributes small, fluctuat-
ing, unbiased changes to the free energy that we ignore; we also
assume that the amount of solvent is so large that one can take a
limit and neglect the fluctuations in this quantity when comput-
ing the changes in free energy for processes involving the solute
copy numbers.

C. ΔG of diffusion
To describe the change in Gibbs free energy accompanying a

solute diffusion event between neighboring compartments, we use
a similar approach to the one used above for chemical reactions.
The key difference here is that, as opposed to multiple species being
involved in a reaction taking place in a single compartment, we
now have a single species involved in a diffusion event taking place
between two compartments.

Consider species i diffusing from compartment A, where its ini-
tial copy number is N i ,A, to compartment B, where its initial copy
number is N i ,B. The total copy numbers of molecules in compart-
ments A and B are NA and NB, respectively. Assume there is just
one spectator species constituting the solvent, labeled s with copy
numbers Ns ,A and Ns ,B (we remove our uncertainty in the exact
values of these numbers by taking a limit later). As a result of the
diffusion event, we have the following changes in these quantities:
N i ,A → N i ,A − 1, N i ,B → N i ,B + 1, Ns ,A → Ns ,A, Ns ,B → Ns ,B,
NA → NA − 1, and NB → NB + 1. The initial Gibbs free energy is

Ginitial
= Ni,A(μ̃0

i + kBT log
Ni,A

NA
) + Ni,B(μ̃0

i + kBT log
Ni,B

NB
)

+ Ns,A(
̃μ0,∗
s + kBT log

Ns,A

NA
) + Ns,B(

̃μ0,∗
s + kBT log

Ns,B

NB
),

(39)

and the final Gibbs free energy is

Gfinal
= (Ni,A − 1)(μ̃0

i + kBT log
Ni,A − 1
NA − 1

)

+ (Ni,B + 1)(μ̃0
i + kBT log

Ni,B + 1
NB + 1

)

+ Ns,A(
̃μ0,∗
s + kBT log

Ns,A

NA − 1
)

+ Ns,B(
̃μ0,∗
s + kBT log

Ns,B

NB + 1
). (40)

The difference of these two expressions leads to an exact for-
mula, similar to Eq. (16), which we omit here. Analogously to
the approximation N ≫ σ made in the context of chemical reac-
tions, here we assume that NA, NB ≫ 1, which amounts to setting
NA − 1 ≈ NA and NB + 1 ≈ NB in Eqs. (39) and (40). Using this
approximation, we can express the change in Gibbs free energy as

ΔG = kBT log
(Ni,A − 1)(Ni,A−1)

NNi,A
i,A

(Ni,B + 1)(Ni,B+1)

NNi,B
i,B

. (41)

We see that, analogously to making the approximation N i ≫ νi
above, if we here take N i ,A, N i ,B ≫ 1, then Eq. (41) reduces to the
common expression

ΔG = kBT log
Ni,B

Ni,A
. (42)

The right-hand side of Eq. (42) will always be less than that of
Eq. (41), which, although the difference is typically very slight,
can lead to systematically biased calculations, as we describe
in Sec. III.

The considerations leading to the main results of this paper
[Eqs. (14), (21), and (41)] do not depend essentially on the assump-
tion that the compartments comprising the simulation volume form
a regular Cartesian grid (as illustrated in Fig. 1). A variety of strate-
gies have been developed to discretize the simulation volume in a
more sophisticated manner. These include unstructured meshes that
use complex polygonal compartments useful for modeling curved
surfaces, as well as adaptive meshes that use compartments with
time-dependent boundaries that can increase computational effi-
ciency.46–48 Hybrid, multiscale methods also exist, which combine
a mesoscopic compartment-based description of part of the simula-
tion volume with either a macroscopic or microscopic description
elsewhere in the volume.49,50 Determining reaction and diffusion
propensities in these frameworks is a somewhat complicated issue
that we do not address here. Without undertaking a detailed anal-
ysis of how the above derivations of expressions for ΔG should be
extended to apply in each of these computational frameworks, we
observe that, given a method for calculating propensities leading to
reaction and diffusion events, the expressions derived here can be
applied directly to the case of an irregular grid of compartments,
which encompasses several applications of interest. In an irregu-
lar grid, each compartment A has an arbitrary shape and volume
VA, with VA ≠ VB, in general, for any pair A, B. It is important to
ensure that for each of these compartments the assumptions regard-
ing timescales described above still hold. If they do hold, then to
apply the above results, it is only necessary to use compartment A’s
local value of ΘA = NAvVA in place of Θ where it appears in the
expressions for ΔG(1), ΔG(2), and ΔG(3) [Eqs. (21), (25), and (28),
respectively].

III. RESULTS
Here, we perform stochastic simulations to illustrate the effects

of approximating ΔG for reaction and diffusion events when copy
numbers are considered small and discrete. We use MEDYAN,
a simulation platform designed to study active networks at high
resolution, which is equipped with a RDME simulation engine as
described above.11 With this, we report on two different simula-
tion setups to test the discrepancy between the nearly exact and
approximate formulas for ΔG corresponding to reactions and to dif-
fusion. We compare the nearly exact equations (21) and (41) for
reactions and diffusion, respectively, with their approximate coun-
terparts [Eqs. (28) and (42)]. We observe that only the nearly exact
expressions result in sensible behavior, i.e., the rate of change of
Gibbs free energy on average is 0 kBT/s when the system is at
equilibrium.
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A. ΔG of reactions
To test the effect of approximation for ΔG of reactions, we

consider the simple reaction scheme

A + B
k+
⇌
k−
C, (43)

where the rate constants to the right and left are k+ = 0.05 μM−1 s−1

and k− = 0.01 s−1, respectively, giving an equilibrium constant
of Keq = k−/k+ = 0.2 μM. We perform stochastic simulations
with the Next Reaction Method in MEDYAN51 using a single
compartment of size 0.125 μm3 (i.e., in this example, there is
no diffusion). To employ Eq. (21) in simulation, we first
compute ΔG0

− σkBT logΘ − σkBT = 3.71 kBT for the for-
ward reaction and −3.71 kBT for the reverse reaction (using
ΔG0 = kBT logKeq), and then, when each reaction fires during
simulation, the quantity Q̃(1) is computed from the instantaneous
values of the copy numbers to determine ΔG(1). A similar approach

is taken to employ Eq. (28). We begin with NA = 100, NB = NC
= 50 and repeat a simulation of 100 s duration 3000 times to
obtain averages of the trajectory of rates ∂tΔG(t) resulting from
the forward and reverse reactions [the notation ∂tΔG(t) implies
that the measured rates vary smoothly as a function of time;
however, this quantity is calculated as the total change in Gibbs
free energy resulting from discretely timed chemical events during
1 s-long windows]. Figure 2 displays the results of these simula-
tions. Note how, while the two trajectories bear close similarity,
the equilibrium value of ∂tΔG(t) centers around 0 kBT/s for the
nearly exact formulation [Eq. (21)], yet erroneously centers around
∼ −0.08 kBT/s for the approximate version [Eq. (28)].

B. ΔG of diffusion
To test the effect of approximating ΔG for diffusion in a

compartment-based reaction–diffusion scheme, we next employed
MEDYAN to simulate diffusion of 1000 solute molecules with diffu-
sion constant 20 μm2 s−1 in a 2 × 2 × 2 grid of compartments, each a

FIG. 2. Numerical results illustrating the difference between nearly exact and approximate formulations of ΔG for reactions and diffusion. (a) Averages over 3000 simulations
of the chemical scheme A + B ⇌ C, using the nearly exact Eq. (21). The blue curve represents the trajectory of ∂ tΔG resulting from the forward reaction, the red curve
represents that from the reverse reaction, and the black curve represents their sum. Shaded regions represent the standard deviation over the 3000 repeated trials. The inset
displays a blow-up of the black curve once the system has reached close to equilibrium. (b) The same as just described, but using the approximate Eq. (28). (c) A single
trajectory of diffusion of 1000 molecules over a 1 μm3 cubic grid of eight compartments, beginning from a random initial spatial distribution. Values of ΔG are calculated using
Eq. (41). (d) The same as just described; however, the values of ΔG are calculated using Eq. (42).
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cube with volume 0.125 μm3. The initial distribution of molecules is
uniformly random over the compartment grid, and thus, the system
begins near equilibrium and is then allowed to stochastically evolve
for 100 s, i.e., the molecules hop randomly between adjacent com-
partments. For each diffusion event, the value of ΔG is determined
using the nearly exact equation (28) for one run, and in another run,
the approximate equation (42) is used. The difference in the trajec-
tories of ∂tΔG for these simulations is stark, as displayed in Fig. 2.
While the trajectory centers around 0 kBT/s for the nearly exact for-
mulation of ΔG, it erroneously centers around ∼ −1925 kBT/s for
the approximate version. Diffusion events are very frequent in this
system, occurring around 240 000 times/s (this number can be calcu-
lated from the parameters of the system and is also observed during
simulations). Thus, since Eq. (42) is always less than the nearly exact
quantity, even by a small amount on the order 0.05 kBT for this sys-
tem, this systematic bias is amplified by the frequency of diffusion
events to produce significant differences from the expected behavior,
necessitating the use of a more exact formula for ΔG. Finally, we per-
formed a simulation involving both reactions and diffusion across
multiple compartments. We found again that only when the nearly
exact formulas were used did the rate of change of Gibbs free energy
center on 0 kBT/s at equilibrium. It is not additionally illuminating
to show the data, so we do not display it here.

IV. DISCUSSION
We have argued that when the copy numbers of the reactants

and products are treated as small, discrete quantities, then certain
approximations leading to the textbook formulas for ΔG of reac-
tion and diffusion [Eqs. (2) and (3)] break down and lead to biased
results. We emphasize that this is true only when the copy num-
bers and reaction occurrences are treated as discrete; when they are
treated as continuous, one should use the textbook formulas. This
can be shown by considering a continuous version of the chemi-
cal system described by Eq. (43). The time evolution of the con-
centrations of the chemical species is obtained by solving a system
of ordinary differential equations that employ mass-action kinetics,

and from this solution, the rates ∂tΔG(t) resulting from the for-
ward and reverse reactions are computed using the instantaneous
values of the species’ copy numbers that enter into Eqs. (21) and (28).
Figure 3 displays the results of these calculations. Here, the total rate
of ∂tΔG(t) only approaches 0 kBT/s, as it must at equilibrium, when
Eq. (28) is used.

When the copy numbers of the chemical species are treated
as continuous, there is no notion of a single occurrence of a reac-
tion; instead, the evolution of the system is parameterized by the
continuous variable ξ that quantifies the extent of advancement of
the reaction.52 In this framework, which is adopted in classical ther-
modynamics, the copy number of any species never jumps instanta-
neously from N i to N i + νi, and thus, the premise of the derivation
presented above leading to Eq. (16) falls apart. This explains why
the seemingly more accurate equation (21) is wrong when applied to
chemical dynamics that are described using continuous variables to
represent the copy number of species. When the chemical dynam-
ics are modeled this way, the textbook expression [Eq. (28)] for the
change in Gibbs free energy is valid. Another way to understand
the difference in these expressions is to view Eq. (28) as giving the
instantaneous slope of G with respect to the degree of advance-
ment of the reaction when these quantities are viewed as contin-
uous variables,38,42 whereas Eq. (16) effectively integrates the con-
tinuously varying quantity dG through a single discrete reaction
occurrence.

If the copy numbers of chemical species are not large com-
pared to the stoichiometric coefficients (i.e., N i is not much greater
than νi), it is best to describe the chemical dynamics by treating
the copy numbers as discrete variables participating in stochastically
timed chemical reactions. This is the philosophy adopted by several
recent models of intracellular environments, where copy numbers of
molecules of interest are sometimes quite small. In these cases, adop-
tion of the more exact expression for ΔG can not only improve preci-
sion but also ensure correct behavior. If concentration gradients are
expected to be a strong source of entropy production (e.g., diffusion
of monomeric actin along the lengths of filopodia, see Refs. 53–55),
then using the nearly exact formulas presented here can ensure

FIG. 3. Analytical results illustrating that, when copy numbers are treated as continuous variables, the textbook formula for ΔG of reaction should be used. (a) Calculation of
the rates ∂ tΔG(t) using Eq. (21) resulting from the forward (blue curve) and reverse (red curve) reactions, as well as their sum (black curve), as described in the main text.
The inset shows a blow-up of these curves as the system approaches equilibrium. (b) The same as just described, but using Eq. (28).
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that the resulting measurements of dissipation are not strongly
biased.
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APPENDIX A: DISCRETE VARIABLES AND THE
RELATION TO THE GIBBS–DUHEM EQUATION

The Gibbs–Duhem equation from classical thermodynamics
states

∑
i∈M

Nidμi = −SdT + Vdp = 0, (A1)

where M represents all chemical species in the system including the
solvent, and the last equality holds at constant temperature and pres-
sure.27 Applying the product rule56 to the expression for the Gibbs
free energy, G =∑i∈MN iμi, we get

dG =∑
i∈M

μidNi +∑
i∈M

Nidμi =∑
i∈M

μidNi. (A2)

Evaluating ∑i∈MμidN i using stoichiometric coefficients in place of
dN i can be shown to lead to the expression ΔG(3).

If the copy numbers are small, we are better served using the
discrete difference operator Δ and not the differential difference
operator d. The product rule for the discrete difference operator
applied to G gives

ΔG =∑
i∈M

μiΔNi +∑
i∈M

NiΔμi +∑
i∈M

ΔμiΔNi. (A3)

Here, we do not neglect the cross-term as we do in the differential
product rule [Eq. (A2)]. We evaluate this expression term by term,

∑
i∈M

μiΔNi = ΔG(3), (A4)

∑
i∈M

NiΔμi = kBT log∏
i∈R
(
Ni − νi
Ni
)
Ni

∏
j∈P
(
Ni + υj
Nj
)

Nj

(
N

N + σ
)
N

,

(A5)

∑
i∈M

ΔNiΔμi = kBT log∏
i∈R
(
Ni − νi
Ni
)
−νi
∏
j∈P
(
Ni + υj
Nj
)

υj

(
N

N + σ
)
σ
.

(A6)

Comparing these to the expressions for the accuracy of the various
approximations given in Appendix B, we have

∑
i∈M

NiΔμi +∑
i∈M

ΔNiΔμi = ΔG(0) − ΔG(3), (A7)

and thus, combining all the terms in Eq. (A3), we recover our exact
expression ΔG(0), and this approach can be seen as an alternate
derivation of Eq. (14). To summarize, for small, discrete copy num-
bers, we obtain corrections to the expression for the change in Gibbs

free energy accompanying chemical reactions that are not captured
by the constraints imposed by the Gibbs–Duhem equation, which
assumes that the copy numbers are continuous quantities.

APPENDIX B: ACCURACY OF THE APPROXIMATIONS
We calculate the accuracy of the approximations ΔG(1), ΔG(2),

and ΔG(3) by taking the difference of these quantities with ΔG(0). We
have

(ΔG(1) − ΔG(0))/kBT = log(
N + σ
N
)
N+σ
− σ, (B1)

(ΔG(2) − ΔG(0))/kBT = log(
N + σ
N
)
N+σ

+ log∏
i∈R
(

Ni

Ni − νi
)
Ni

×∏
j∈P
(

Nj

Nj + υj
)

Nj

, (B2)

(ΔG(3) − ΔG(0))/kBT = log(
N + σ
N
)
N+σ

+ log∏
i∈R
(

Ni

Ni − νi
)
Ni−νi

×∏
j∈P
(

Nj

Nj + υj
)

Nj+υj

. (B3)

The accuracy of ΔG(1) depends only on N for a given reaction,
whereas the remaining approximations depend also on the values of
N i and N j. These observations reflect the fact that, in order to arrive
at the expression for ΔG(1), we leveraged the size of N compared to
σ, and to arrive at the expressions for ΔG(2) and ΔG(3), we further
successively leveraged the sizes of N i, N j compared to νi, νj.

APPENDIX C: ΔG OF SOLVENT FLUCTUATIONS
Here, we first calculate an approximate expression for the

change in Gibbs free energy of the system accompanying a fluctu-
ation of n solvent molecules from compartment A to compartment
B. We have

Ginitial
=∑

i∈L
Ni,A(μ̃0

i + kBT log
Ni,A

NA
) + Ns,A(

̃μ0,∗
s + kBT log

Ns,A

NA
)

+∑
i∈L

Ni,B(μ̃0
i + kBT log

Ni,B

NB
) + Ns,B(

̃μ0,∗
s + kBT log

Ns,B

NB
),

(C1)

where L is the set of solute species. After the transfer of n solvent
molecules from A to B, we have

Gfinal
=∑

i∈L
Ni,A(μ̃0

i + kBT log
Ni,A

NA − n
)+Ns,A(

̃μ0,∗
s + kBT log

Ns,A − n
NA − n

)

+∑
i∈L

Ni,B(μ̃0
i + kBT log

Ni,B

NB +n
)+Ns,B(

̃μ0,∗
s + kBT log

Ns,B +n
NB + n

).

(C2)

Taking the difference and simplifying, we arrive at the exact expres-
sion

ΔG = kBT log
NNA

A

(NA − n)NA−n
(Ns,A − n)Ns,A−n

NNs,A
s,A

NNB
B

(NA + n)NA+n

×
(Ns,B + n)Ns,B+n

NNs,B
s,B

. (C3)
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To understand the magnitude of ΔG for typical values of n, Ns ,A,
and Ns ,B compared to NA and NB, we first make the assumption that
the two compartments initially have the same number of solvent
molecules, i.e., Ns ,A = Ns ,B ≡ Ns. Next, we assume that the solvent
molecules dominate the proportion of total molecules, allowing us
to write NA ≈ NB ≡ N. These approximations will hold in the limit
that the number of solute molecules is much less than the number
of solvent molecules for each compartment. We next introduce the
small parameters

εA =
∑i∈LNi,A

N
(C4)

and

εB =
∑i∈LNi,B

N
, (C5)

which capture the dilutions of the two compartments, and

ξ =
n
N

, (C6)

which represents the relative size of the fluctuation. For N = 109, we
typically have ξ ∼ 10−4.5 (since n ∼ N1/2) and ε ∼ 10−6. Substituting
these parameters into Eq. (C3), we have

ΔG = kBT log
N2N

(N(1 − ξ))N(1−ξ)(N(1 + ξ))N(1+ξ)

×
(N(1 − εA − ξ))N(1−εA−ξ)(N(1 − εB + ξ))N(1−εB+ξ)

(N(1 − εA))N(1−εA)(N(1 − εB))N(1−εB)
. (C7)

We expand this expression to first order in εA and εB and then to
second order in ξ. The result is

ΔG ≈ (εA − εB)NξkBT +
1
2
(εA + εB)Nξ2kBT

= (εA − εB)nkBT +
1
2
(εA + εB)

n2

N
kBT. (C8)

The observed numerical agreement between Eqs. (C3) and
(C8) is close for realistic values of the parameters: for NA = 109,
NB = 5 × 108, εA = 10−6, εB = 3 × 10−6, and n = N1/2

A , the predic-
tion of Eq. (C3) is −0.0 632 401 kBT and the prediction of Eq. (C8)
is −0.0 632 436 kBT. The first term in Eq. (C8) will dominate if the
solute dilutions in the two compartments are very different from
each other. In this case, we may compare the size of this change
in Gibbs free energy to that accompanying the diffusion of a solute
from compartment B to compartment A. This latter change in Gibbs
free energy will be approximately kBT log εA

εB
. If we now set εA = aεB,

where a is of order 1 (typically, it will fall in the range [1/10, 10]),
then ΔG for the solvent fluctuation will be kBT(a − 1)εBn and ΔG for
the solute diffusion will be kBT log a. The product εBn will be typi-
cally on the order of ∼10−1.5, so one can see that for typical values of
the parameters the change in Gibbs free energy from a solute diffu-
sion event will be significantly greater in magnitude than that from a
solvent fluctuation. If the dilutions are very similar, then εA − εB ≈ 0,
and the second term in Eq. (C8) dominates. This term is on the order
of (εA + εB)kBT since n2

N ∼ 1. These changes in Gibbs free energy
will typically be much smaller than those accompanying a chemical
reaction or inter-compartment diffusion of the solute. Thus, we may
neglect the activity of the solvent in tracking the Gibbs free energy
of the system.

REFERENCES
1R. Grima and S. Schnell, “Modelling reaction kinetics inside cells,” Essays
Biochem. 45, 41–56 (2008).
2N. Tanaka and G. A. Papoian, “Reverse-engineering of biochemical reaction net-
works from spatio-temporal correlations of fluorescence fluctuations,” J. Theor.
Biol. 264(2), 490–500 (2010).
3F. Baras and M. Malek Mansour, “Reaction-diffusion master equation: A com-
parison with microscopic simulations,” Phys. Rev. E 54(6), 6139 (1996).
4D. Bernstein, “Simulating mesoscopic reaction-diffusion systems using the Gille-
spie algorithm,” Phys. Rev. E 71(4), 041103 (2005).
5D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,”
J. Phys. Chem. 81(25), 2340–2361 (1977).
6J. Schaff, C. C. Fink, B. Slepchenko, J. H. Carson, and L. M. Loew, “A general com-
putational framework for modeling cellular structure and function,” Biophys. J.
73(3), 1135–1146 (1997).
7L. M. Loew and C. S. James, “The virtual cell: A software environment for
computational cell biology,” Trends Biotechnol. 19(10), 401–406 (2001).
8E. Roberts, J. E. Stone, and Z. Luthey-Schulten, “Lattice microbes: High-
performance stochastic simulation method for the reaction-diffusion master
equation,” J. Comput. Chem. 34(3), 245–255 (2013).
9M. J. Hallock and Z. Luthey-Schulten, “Improving reaction kernel performance
in lattice microbes: Particle-wise propensities and run-time generated code,” in
2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW) (IEEE, 2016), pp. 428–434.
10J. Hattne, D. Fange, and J. Elf, “Stochastic reaction-diffusion simulation with
mesoRD,” Bioinformatics 21(12), 2923–2924 (2005).
11K. Popov, J. Komianos, and G. A. Papoian, “MEDYAN: Mechanochemical sim-
ulations of contraction and polarity alignment in actomyosin networks,” PLoS
Comput. Biol. 12(4), e1004877 (2016).
12C. Floyd, G. A. Papoian, and C. Jarzynski, “Quantifying dissipation in acto-
myosin networks,” Interface Focus 9(3), 20180078 (2019).
13M. Ander, B. Pedro, B. Di Ventura, J. Ferkinghoff-Borg, M. A. F. M. Foglierini,
C. Lemerle, I. Tomas-Oliveira, and L. Serrano, “Smartcell, a framework to simu-
late cellular processes that combines stochastic approximation with diffusion and
localisation: Analysis of simple networks,” Syst. Biol. 1(1), 129–138 (2004).
14B. Drawert, S. Engblom, and A. Hellander, “URDME: A modular framework
for stochastic simulation of reaction-transport processes in complex geometries,”
BMC Syst. Biol. 6(1), 76 (2012).
15S. S. Andrews, J. A. Nathan, R. Brent, and P. A. Adam, “Detailed simulations of
cell biology with Smoldyn 2.1,” PLoS Comput. Biol. 6(3), e1000705 (2010).
16M. Vigelius, A. Lane, and B. Meyer, “Accelerating reaction–diffusion simu-
lations with general-purpose graphics processing units,” Bioinformatics 27(2),
288–290 (2010).
17S. Wils and E. De Schutter, “Steps: Modeling and simulating complex reaction-
diffusion systems with python,” Front. Neuroinf. 3, 15 (2009).
18T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Courier
Corporation, 2004).
19T. M. Earnest, J. A. Cole, and Z. Luthey-Schulten, “Simulating biological pro-
cesses: Stochastic physics from whole cells to colonies,” Rep. Prog. Phys. 81(5),
052601 (2018).
20D. A. Beard and H. Qian, “Relationship between thermodynamic driving force
and one-way fluxes in reversible processes,” PLoS One 2(1), e144 (2007).
21I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd ed.
(Interscience, New York, 1967).
22R. Rao and M. Esposito, “Nonequilibrium thermodynamics of chemical reaction
networks: Wisdom from stochastic thermodynamics,” Phys. Rev. X 6(4), 041064
(2016).
23J. L. England, “Dissipative adaptation in driven self-assembly,” Nat. Nanotech-
nol. 10(11), 919 (2015).
24D. S. Seara, V. Yadav, I. Linsmeier, A. P. Tabatabai, W. O. Patrick, S. M. A. Tabei,
S. Banerjee, and M. P. Murrell, “Entropy production rate is maximized in non-
contractile actomyosin,” Nat. Commun. 9(1), 4948 (2018).
25J. L. England, “Statistical physics of self-replication,” J. Chem. Phys. 139(12),
121923 (2013).

J. Chem. Phys. 152, 084116 (2020); doi: 10.1063/1.5140980 152, 084116-11

Published under license by AIP Publishing

 23 Septem
ber 2023 23:53:42

https://scitation.org/journal/jcp
https://doi.org/10.1042/bse0450041
https://doi.org/10.1042/bse0450041
https://doi.org/10.1016/j.jtbi.2010.02.022
https://doi.org/10.1016/j.jtbi.2010.02.022
https://doi.org/10.1103/physreve.54.6139
https://doi.org/10.1103/physreve.71.041103
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/s0006-3495(97)78146-3
https://doi.org/10.1016/s0167-7799(01)01740-1
https://doi.org/10.1002/jcc.23130
https://doi.org/10.1093/bioinformatics/bti431
https://doi.org/10.1371/journal.pcbi.1004877
https://doi.org/10.1371/journal.pcbi.1004877
https://doi.org/10.1098/rsfs.2018.0078
https://doi.org/10.1049/sb:20045017
https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1371/journal.pcbi.1000705
https://doi.org/10.1093/bioinformatics/btq622
https://doi.org/10.3389/neuro.11.015.2009
https://doi.org/10.1088/1361-6633/aaae2c
https://doi.org/10.1371/journal.pone.0000144
https://doi.org/10.1103/physrevx.6.041064
https://doi.org/10.1038/nnano.2015.250
https://doi.org/10.1038/nnano.2015.250
https://doi.org/10.1038/s41467-018-07413-5
https://doi.org/10.1063/1.4818538


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

26I. Prigogine and G. Nicolis, “Biological order, structure and instabilities,”
Q. Rev. Biophys. 4(2-3), 107–148 (1971).
27H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley,
1998).
28P. Attard, Thermodynamics and Statistical Mechanics (CUP Archive,
2002).
29G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From
Dissipative Structures to Order through Fluctuations (Wiley, 1977), pp. 339–426.
30H. Lodish, J. E. Darnell, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott,
A. Bretscher, H. Ploegh, P. Matsudaira et al., Molecular Cell Biology (Macmillan,
2008).
31R. Phillips, J. Theriot, J. Kondev, and H. Garcia, Physical Biology of the Cell
(Garland Science, 2012).
32B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular
Biology of the Cell, 4th ed. (Garland, 2002).
33P. W. Atkins, J. De Paula, and J. Keeler, Atkins’ Physical Chemistry (Oxford
University Press, 2018).
34D. A. Beard and H. Qian, Chemical Biophysics: Quantitative Analysis of Cellular
Systems (Cambridge University Press, 2008).
35D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular Approach
(University Science Books, Sausalito, CA, 1997), Vol. 1.
36T. L. Hill, “Perspective: Nanothermodynamics,” Nano Lett. 1, 111 (2001).
37T. L. Hill, Thermodynamics of Small Systems (Courier Corporation, 1994).
38J. de Heer, “The free energy charge accompanying a chemical reaction and the
Gibbs-Duhem equation,” J. Chem. Educ. 63(11), 950 (1986).
39T. Engel, P. Reid et al., Physical Chemistry (Pearson, 2006).
40The argument of the logarithm, NA

ΘA
, has dimensions of concentration, however

it is understood that such quantities are taken with reference to some standard
concentration, typically 1M.
41D. M. Anderson, J. D. Benson, and A. J. Kearsley, “Foundations of mod-
eling in cryobiology—I: Concentration, Gibbs energy, and chemical potential
relationships,” Cryobiology 69(3), 349–360 (2014).
42G. M. Barrow, “Free energy and equilibrium: The basis of G0 = -RT in K for
reactions in solution,” J. Chem. Educ. 60(8), 648 (1983).

43We have − log( N+σ
N )

(N+σ)
= − log(1 + σ

N )
(N+σ)

≈ −σ for large N.
44Y. Mishin, “Thermodynamic theory of equilibrium fluctuations,” Ann. Phys.
363, 48–97 (2015).
45R. Milo and R. Phillips, Cell Biology by the Numbers (Garland Science, 2015).
46S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, “Simulation of stochas-
tic reaction-diffusion processes on unstructured meshes,” SIAM J. Sci. Comput.
31(3), 1774–1797 (2009).
47S. A. Isaacson and C. S. Peskin, “Incorporating diffusion in complex geometries
into stochastic chemical kinetics simulations,” SIAM J. Sci. Comput. 28(1), 47–74
(2006).
48B. Bayati, P. Chatelain, and P. Koumoutsakos, “Adaptive mesh refinement for
stochastic reaction–diffusion processes,” J. Comput. Phys. 230(1), 13–26 (2011).
49L. Ferm, A. Hellander, and P. Lötstedt, “An adaptive algorithm for simulation of
stochastic reaction–diffusion processes,” J. Comput. Phys. 229(2), 343–360 (2010).
50M. B. Flegg, S. J. Chapman, and R. Erban, “The two-regime method for optimiz-
ing stochastic reaction–diffusion simulations,” J. R. Soc., Interface 9(70), 859–868
(2011).
51M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chemical
systems with many species and many channels,” J. Phys. Chem. A 104(9), 1876–
1889 (2000).
52J. Borge, “Reviewing some crucial concepts of Gibbs energy in chemical equi-
librium using a computer-assisted, guided-problem-solving approach,” J. Chem.
Educ. 92(2), 296–304 (2014).
53R. Erban, M. B. Flegg, and G. A. Papoian, “Multiscale stochastic reaction–
diffusion modeling: Application to actin dynamics in filopodia,” Bull. Math. Biol.
76(4), 799–818 (2014).
54D. Ulrich, G. A. Papoian, and R. Erban, “Steric effects induce geometric
remodeling of actin bundles in filopodia,” Biophys. J. 110(9), 2066–2075 (2016).
55Y. Lan and G. A. Papoian, “The stochastic dynamics of filopodial growth,”
Biophys. J. 94(10), 3839–3852 (2008).
56The product rule can be derived as d(fg) = (f + df ) (g + dg) − fg = fdg + gdf
+ dfdg = fdg + gdf since the term dfdg is assumed to be negligible. We give this
reminder to emphasize the presence of the cross term, which we do not neglect in
the discrete case.

J. Chem. Phys. 152, 084116 (2020); doi: 10.1063/1.5140980 152, 084116-12

Published under license by AIP Publishing

 23 Septem
ber 2023 23:53:42

https://scitation.org/journal/jcp
https://doi.org/10.1017/s0033583500000615
https://doi.org/10.1021/nl010010d
https://doi.org/10.1021/ed063p950
https://doi.org/10.1016/j.cryobiol.2014.09.004
https://doi.org/10.1021/ed060p648
https://doi.org/10.1016/j.aop.2015.09.015
https://doi.org/10.1137/080721388
https://doi.org/10.1137/040605060
https://doi.org/10.1016/j.jcp.2010.08.035
https://doi.org/10.1016/j.jcp.2009.09.030
https://doi.org/10.1098/rsif.2011.0574
https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/ed5005992
https://doi.org/10.1021/ed5005992
https://doi.org/10.1007/s11538-013-9844-3
https://doi.org/10.1016/j.bpj.2016.03.013
https://doi.org/10.1529/biophysj.107.123778

