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ABSTRACT
Simulating soft matter systems such as the cytoskeleton can enable deep understanding of exper-
imentally observed phenomena. One challenge of modelling such systems is realistic description
of the steric repulsion between nearby polymers. Previous models of the polymeric excluded vol-
ume interactionhave thedeficit of beingnon-analytic, being computationally expensive, or allowing
polymers to erroneously cross each other. A recent solution to these issues, implemented in the
MEDYAN simulation platform, uses analytical expressions obtained from integrating an interaction
kernel along the lengths of two polymer segments to describe their repulsion. Here, we extend this
model by re-deriving it for lower-dimensional geometrical configurations, deriving similar expres-
sions using a steeper interaction kernel, comparing it to other commonly used potentials, and
showinghow toparameterise thesemodels.We also generalise this new integrated style of potential
by introducing a segmental Lennard-Jones potential, which enables modelling both attractive and
repulsive interactions in semi-flexible polymer networks. These results can be further generalised to
facilitate the development of effective interaction potentials for other finite elements in simulations
of softmatter systems.
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1. Introduction

Excluded volume interactions between spatially extended
macromolecules play an important role in a wide range
of cellular phenomena. They help to produce meso-
scopically ordered structures, which enable the complex
functionality exhibited by cells. For example, it has been
shown that steric interactions alone can induce alignment
of the long biopolymers that comprise the cytoskeleton
[1]. These interactions have also been implicated in trans-
mitting non-equilibrium fluctuations from one cellular
subsystem to another [2]. Excluded volume, or steric,
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interactions are in fact an important physical feature of
many soft matter systems, which are often controlled by
a complex interplay of steric and entropic effects [3,4].

The computational modelling of such soft matter sys-
tems has become an essential tool used in biology, chem-
istry, and physics [5,6]. In particular, software pack-
ages for simulating the cytoskeleton, a complex soft
activematter system comprising interlinked biopolymers
and molecular motors, have helped provide theoreti-
cal understanding of various experimental phenomena
[7–12]. Reaching timescales of thousands of seconds and
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length scales of tens of micrometers, packages such as
AFiNeS, CytoSim, the model of Kim and coworkers,
and MEDYAN allow exploration of fascinating emer-
gent cytoskeletal phenomena while striving to preserve
realistic microscopic physics [13–16]. These models typ-
ically employ effective, coarse-grained potentials based
on ideas from polymer physics. For example, treating
a semi-flexible polymer (for which the typical polymer
length is comparable to the persistence length) as a
one-dimensional piecewise linear chain, the mechani-
cal strain energy can be straightforwardly decomposed
into stretching and bending terms which can be com-
puted using harmonic functions of the linear segments’
positions [17]. It is less straightforward, however, to
model the potential energy mediating the excluded vol-
ume interaction between neighbouring polymers. This is
treated in different ways between CytoSim, the model of
Kim and coworkers, and MEDYAN, and it is not consid-
ered inAFiNeS.However, accuratelymodelling repulsion
between polymers is essential for realistically simulating
important behaviours such as entanglement, reptation,
liquid crystal ordering, and entropic depletion forces
[4,18–20].

The primary physical origin of the excluded volume
interaction between typical biopolymers such as actin
is screened Coulomb repulsion [21–23]. Actin filaments
have a relatively high linear charge density (∼0.4 e/Å),
but biological ionic environments have a Debye-Hückel
screening length (∼1 nm) the same order of magnitude
as the filament radius (∼3.5 nm) [24,25]. In specialised
tightly packed actin bundles and sarcomeric structures
(with inter-filament spacings ∼0.3–30 nm) complicated
ion distributions are established, but in more common
actin cortical networks the screening length is much less
than the average inter-filament spacing (∼30–150 nm)
[25–28]. For typical actin networks, therefore, a suitable
approximation to the interaction of screened, electrically
charged polymers is a hard-wall potential; however this
is a discontinuous function poorly suited to implemen-
tation in dynamical simulations. Additionally, it is not
immediately clear how to define the distance between
two linear segments of a piecewise-chain. The Gay-Berne
potential accounts for the geometrical anisotropy of the
interacting elements and uses a centre-to-centre dis-
tance, but this model can fail for elements with espe-
cially large aspect ratios which includes biopolymers
such as actin [29,30]. One alternative approach has
been to use the closest distance between the two seg-
ments, but this can introduce discontinuities impair-
ing simulation stability [15,31]. Intuitively, the interac-
tion between two linear segments should arise as the
integrated effect of the point-wise interactions between
all pairs of points on the segments. One can imagine

subdividing the linear segments to numerically approx-
imate this type of interaction, a method implemented
in the ASPHERE package of LAMMPS [32]. However,
by introducing more sampling points this approach
negates the gain in efficiency from coarse-graining of
the polymer into linear segments in the first place, as
discussed below.

The novel solution to these issues used in the
MEDYAN model is to derive an analytical expression
for the integrated effect of power-law repulsion between
each differential element of the two interacting linear
segments [16]. A suitably steep power law function of
the separation r can be used as a smooth mimic of the
hard-wall interaction. Specifically, inMEDYAN the func-
tion 1/r4 serves as the interaction kernel of the dou-
ble integral over the lengths of the two segments (see
Equation (1) below). However, the result of the inte-
gration is an opaque and complicated expression, and
it contains degeneracies when the two linear segments
are coplanar, leading to undefined behaviour. To address
these shortcomings, in this paper we first clarify the
calculation of the excluded volume repulsion potential
used in MEDYAN. Then we illustrate how the problem
can be solved in the coplanar case and in other lower-
dimensional geometries, and derive further expressions
for the alternative steeper interaction kernel 1/r6. We
then characterise the dependence of these interactions
on the configurations of the two segments, discuss how
to parameterise the potential, and compare it to the
widely-used Gay-Berne form. We also introduce a new
‘segmental Lennard-Jones’ interaction which has both
attractive and repulsive components. Finally, we imple-
ment a numerical approximationmethod and discuss the
gain in computational efficiency fromusing the analytical
expressions.

2. Energies and forces of the integrated
interaction

Here we derive analytical expressions for the excluded
volume repulsion energy between twopolymer segments,
using the 1/r4 interaction kernel which corresponds
to the implementation in MEDYAN. We first give the
derivation for cylindrical segments in 3D space. Because
the 3D expressions for the repulsion energy are not
definedwhen the cylinders are coplanar, we next describe
the steps for re-deriving these expressions in 2D sce-
narios. Finally, we extend the derivations to apply to an
interaction kernel of 1/r6, representing an even steeper
hard-wall mimic. Throughout this section certain com-
plicated integrals must be solved, for which we use the
computer algebra system (CAS) Mathematica [33,34].
We provide a Mathematica notebook (.nb) file in the
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Supplementary Material which implements the calcula-
tions described below.

2.1. Segments in 3D

Given the positions and orientations of two thin cylin-
ders, we define the excluded volume repulsion energy
U as proportional to a double integral of the function
1/r(s, t)4, where the integrals run over the length of each
cylinder:

U = Kvol

∫ 1

0

∫ 1

0
ds dt

1
r(s, t)4

. (1)

Here s, t ∈ [0, 1] parameterise the distance along the two
cylinders A and B respectively, r(s, t) denotes the magni-
tude of the vector r(s, t)which separates points on the two
cylinder axes ps and pt , and Kvol is the constant of pro-
portionality, having units of energy times length squared.
The geometry of the problem is illustrated in Figure 1.

The position and orientation of the two cylinders A
and B can be specified by four vectors pointing to the
positions of the four ends: c1 and c2 point to the minus
and plus ends, respectively, of cylinder A and c3 and c4
do likewise for cylinder B. Alternatively, we can describe
the two cylinders by the vectors

V = c1 (2)

A = c1 − c2 (3)

B = c3 − c4 (4)

C = c3 − c1. (5)

We can represent a point on cylinder A parameterised by
s, ps, as

ps = V − sA, (6)

Figure 1. Two cylinders, A and B, are in red, with the minus ends
marked by blue dots. r is defined by the points ps and pt on the
cylinders.

and similarly for a point on cylinder B parameterised by
t, pt , we have

pt = V + C − tB. (7)

To solve the integral in Equation (1), first we need towrite
r(s, t). We have

r = pt − ps = C − tB + sA (8)

and

r = (
C · C + 2sA · C + s2A · A

− 2tB · C − 2stA · B + t2B · B)1/2. (9)

To simplify notation, we introduce the following vari-
ables:

a = A · A
b = B · B
c = C · C
d = A · B
e = A · C
f = B · C.

Defining these intermediary variables is also computa-
tionally efficient by avoiding repeatedly calculating the
same expressions. With this, the goal is do the following
integral:

U = Kvol

∫ 1

0

∫ 1

0
ds dt

× 1
(c + 2es + as2 − 2ft − 2dst + bt2)2

. (10)

This integral can be done with the help of a CAS
resulting in a lengthy expression provided in Appendix
(Equation (A1)). It can be cleaned up somewhat by intro-
ducing the following variables:

AA =
√
ac − e2

BB =
√
bc − f 2

CC = de − af

DD = be − df

EE =
√
a(b + c − 2f ) − (d − e)2

FF =
√
b(a + c + 2e) − (d + f )2

GG = d2 − ab − CC

HH = CC + GG + DD

JJ = c(GG + CC) + eDD − fCC
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ATG1 = tan−1
(
a + e
AA

)
− tan−1

( e
AA

)

ATG2 = tan−1
(
a + e − d

EE

)
− tan−1

(
e − d
EE

)

ATG3 = tan−1
(

f
BB

)
− tan−1

(
f − b
BB

)

ATG4 = tan−1
(
d + f
FF

)
− tan−1

(
d + f − b

FF

)
.

These variable names are chosen to match those in the
MEDYAN codebase. We point out that the multiple let-
ters comprising these variables do not indicate multipli-
cation of two or more variables. With this, the result is

U = Kvol

2JJ

(
ATG1

CC
AA

+ ATG2
GG
EE

+ ATG3
DD
BB

+ ATG4
HH
FF

)
. (11)

Implementing excluded volume repulsion in simulation
usually also requires expressions for the derivatives of the
energy with respect to the cylinder endpoints ci, which
are used to determine the forces for time integrator-based
approaches (e.g. CytoSim) or equivalently the gradi-
ents forminimisation-based approaches (e.g.MEDYAN).
Derivatives such as ∂U

∂c1 can be found using the chain rule:

∂U
∂c1

= ∂U
∂a

∂a
∂c1

+ ∂U
∂b

∂b
∂c1

+ . . . , (12)

where the derivatives ∂U
∂a ,

∂U
∂b , . . . , can be obtained from

Equation (A1) in Appendix, and the derivatives ∂a
∂ci can

be found using the definitions given above. For example,

∂a
∂c1

= ∂

∂c1
(c1 · c1 − 2c2 · c1 + c2 · c2)

= c1 − 2c2. (13)

2.2. Segments in 2D

When the cylinders A and B are in the same plane then
the vectors A, B, and C are all coplanar and the prob-
lem becomes effectively 2D. Some implementations may
also simply assume a 2D space. In this scenario, the scalar
triple product (A × B) · C vanishes. It can be shown by
straightforward algebraic rearrangement that the quan-
tity JJ appearing in the denominator of the right hand side
of Equation (11) is given by

JJ = − ((A × B) · C)2 . (14)

As a result, the above expressions for the energy U and
derivatives ∂U

∂ci are not defined, and a special case must be
considered.

It is instructive to count the number of free variables in
the 3D and 2D case. In both settings, U is invariant with
respect to a rigid rotation or translation of the system. In
3D, we originally have 12 variables (the 12 components
of c1, c2, c3, and c4), but translation invariance implies
that 3 degrees of freedom are extraneous and rotation
invaraince implies that 3 additional degrees of freedom
are extraneous. This leaves 6 independent degrees of free-
dom, which appear in the expression for U as a, b, c,
d, e, f. In 2D, we originally have 8 degrees of freedom,
but translation invariance implies that 2 degrees of free-
dom are extraneous and rotation invariance implies than
additional 1 degree of freedom is extraneous, leaving 5
degrees of freedom. Indeed, the condition in 2D that
JJ = 0 implies an additional constraint among the 6 vari-
ables. It can be shown that, in the 2D case but not in the
3D case,

f = de +
√

(ab − d2)(ac − e2)
a

, (15)

and hence only 5 variables are free in 2D.
One could through substitution write the integrand

1/r4 in terms of five free variables in 2D, but this becomes
an algebraically complicated expression that precludes
exact integration. Instead, we first rotate the configura-
tion so the shared plane coincides with the xy plane.
Next, we write the integrand using the 6 (redundant) vec-
tor components Ax, Ay, Bx, By, Cx, and Cy to find the
interaction energy in 2D. We have

U =Kvol

∫ 1

0

∫ 1

0
ds dt

1(
(Cx + Axs − Bxt)2 + (Cy + Ays − Byt)2

)2 . (16)

This integral has a complicated result which is provided
in Appendix (Equation (A2)). The denominator of the
result is proportional toAyBx − AxBy. IfA andB are par-
allel (or anti-parallel) in addition to coplanar, then one
can show thatAxBy = AyBx, and hence the expression for
U in the coplanar case is not defined.

When A and B are (anti-)parallel, then B = ξA for
some ξ ∈ IR, ξ �= 0. Expressing the integrand using this
new variable, we have

U =Kvol

∫ 1

0

∫ 1

0
ds dt

1(
(Cx + Ax(s − ξ t))2 + (Cy + Ay(s − ξ t))2

)2 .
(17)
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The result of this integral is also provided in Appendix
(Equation (A3)). The denominator of that result is pro-
portional to (AyCx − AxCy)

3. If, in addition to being
parallel, A and B are colinear, then C is parallel to A and
AxCy = AyCx, and this result is not defined.

When A and B are colinear, one may write C = ζA
and express the integrand as

U = Kvol

∫ 1

0

∫ 1

0
ds dt

1(
(Ax(ζ + s − ξ t))2 + (Ay(ζ + s − ξ t))2

)2 . (18)

The result of this integral, also provided in Appendix
(Equation (A4)), is simpler than in the previous cases,
depending on just 4 variables Ax, Ay, ξ , and ζ . Several
ratios appear in the result with denominators propor-
tional to (A2

x + A2
y)

2, ξ , ζ , (ζ − ξ)2, (ζ − ξ + 1)2, and
(ζ + 1)2. Requiring that none of these are zero implies
that A, B, and C are all non-zero, and that A and B are
nowhere coincident in which case the interaction would
diverge.

The treatment given above for handling the special
case scenarios of cylinder configurations that lead to
degeneracies in the energy expressions is not exhaus-
tive, and certain degeneracies remain (such as one
coming from AxCx + AyCy = 0 in the parallel case,
Equation (A3)). These degeneracies, unlike those com-
ing from geometrical properties of the configurations,
remain as a result of expressing the integrand using
redundant variables (which was necessary to do the inte-
gration analytically). It would be straightforward to con-
sider each degeneracy in turn and, by following steps
similar to those outlined above, derive backup expres-
sions for each scenario. However, we recommend instead
implementing a numerical approximation method to fall
back onwhen these degeneracies are encountered in sim-
ulation. Such a numerical method is described below.
We emphasise that in a given dimensionality, the man-
ifold of cylinder configurations leading to degeneracies
is of lower dimension than the ambient space and hence
such configurationswill be exceedingly rare under typical
physical dynamics.

2.3. 1/r6 interaction kernel

In Equation (1), the repulsion energy between two cylin-
ders was taken as a double integral over both cylinder
lengths of the interaction kernel 1/r4. The 1/r4 interac-
tion is fairly steep, mimicking a hard-wall boundary with
an effective cylinder radius set by the choice of prefactor
Kvol. However one may prefer an even steeper potential
than 1/r4, such as 1/r6, so that the range of separation

over which the interaction starts to be felt is narrower.
The new interaction energy is expressed as

U = Kvol

∫ 1

0

∫ 1

0
ds dt

1
r(s, t)6

. (19)

Such a potential mimics even more closely a true hard-
wall interaction (see Figure 3), andwith both interactions
in hand it becomes possible by combining them to cre-
ate bimodal energy profiles, similar to a Lennard-Jones
potential. It is straightforward to carry through identi-
cal steps for the 1/r6 kernel as outlined above for the
1/r4 kernel, with the same issues of degeneracies arising
from special-case cylinder configurations. For brevity,
and since no new concepts are involved, we skip the
discussion here of how those steps are carried out and
also omit the resulting expressions from Appendix. The
expressions can be found in the supplementary Mathe-
matica notebook file.

3. Examples and parameterisation

3.1. Comparing endpoint-based and integrated
kernel interactions

Here we analyse the ‘integrated kernel’ energy functions
(Equations (1) and (19)) anddiscuss notable features aris-
ing from a set of test cases. For comparison, we also intro-
duce two other ‘endpoint-based’ interaction functions
which, rather than integrating the kernels 1/r4 or 1/r6
over the lengths of the cylinders, simply include repulsion
between felt by the endpoints of the two cylinders:

U = Kvol

(
1

m(c3, c1, c2)4
+ 1

m(c4, c1, c2)4

+ 1
m(c1, c3, c4)4

+ 1
m(c2, c3, c4)4

)
(20)

and

U = Kvol

(
1

m(c3, c1, c2)6
+ 1

m(c4, c1, c2)6

+ 1
m(c1, c3, c4)6

+ 1
m(c2, c3, c4)6

)
(21)

wherem(cx, ca, cb) represents the minimal distance from
the point cx to the line segment connecting ca and cb.
Expressions of this type are sometimes used to model the
steric repulsion of polymers, but we show below that they
have the deficiency of a relatively flat energy profile for
cylinder separations much less than the cylinder length,
which can allow cylinders to overlap each other under
typical dynamics [35,36].

We consider two cylinders each of length 200, where
the units are fixed by setting Kvol = 1 throughout. The
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Figure 2. Plots of interaction energy are shown as the inter-cylinder distance l is varied for different cylinder orientations and choices
of interaction energy. Units are arbitrary, as length and energy scales are set by the Kvol prefactor which is taken to be unity (amounting
to setting the vertical position of each curve on the log-log plots). (A) The blue line represents Equation (1), the red line represents
Equation (19), the green line represents Equation (20), and the purple line represents Equation (21). The dotted vertical line indicates
the length of the two cylinders. The cylinders are oriented perpendicularly to each other as visualised in the inset. The light dotted lines
proportional to 1/l2, 1/l4, and 1/l6 show the scaling behaviours in different regimes. (B) The same plot is shown as in panel (A), except
for a relative orientation of 30◦ between the cylinders. (C) The same plot is shown as in panel (A), except for a relative orientation of 0◦
between the cylinders. (D) A plot is shown of a segmental Lennard-Jones interaction energy profile from combining the 1/r4 and 1/r6

integrated kernel energies (Equation (24)). The horizontal dotted line separates the positive and negative regions of the potential.

cylinders are aligned (i.e. A · C = 0), and the vector l
joining the each cylinder’s midpoint is kept perpendic-
ular to each cylinder as we rotate one cylinder about this
vector, producing different relative configurations. This
set-up is visualised in the insets of Figure 2(A)–(C). For
each configuration we vary the distance l (the magnitude
of l), and study the effect on the various interaction ener-
gies Equations (1), (19)–(21). The results are displayed in
Figure 2.

Two key features are evident from this example. First,
there are different asymptotic behaviours in the small and
large distance regimes, with a crossover around distances
on the order of L. For l � L, the integrated expressions
behave like a power law with an exponent equal to that

of the kernel function plus 2, whereas for l � L, the
integrated expressions behave like a power law with an
exponent equal to that of the kernel function:

U =
∫ 1

0

∫ 1

0
ds dt

1
r(s, t)n

∼
{
l2−n l � L
l−n l � L

(22)

where n = 4 and 6 in the examples shown. This
behaviour is expected, since in the far field all points in
the cylinders repel each other with similar magnitudes,
whereas in the near field the repulsion is dominated only
by nearby points, changing the scaling by a factor of l2.
Second, we see that for the non-coplanar cylinder config-
urations (Figure 2(A ,B)), the endpoint-based interaction



MOLECULAR PHYSICS 7

energies have flat energy profiles for distances much less
than the cylinder length. For the endpoint-based func-
tions,

U ∼
{
1 l � L
l−n l � L

. (23)

One can understand this as resulting from the fact
that, when l � L, the distance between the endpoints of
non-coplanar cylinders change much less than the dis-
tance between points the middle of the cylinder as l is
decreased, and these points in the middle contribute do
not contribute to the energy penalty in the endpoint-
based case. This qualitative difference between the inte-
grated and endpoint-based interactions is much less pro-
nounced in the coplanar case, when the distance between
the endpoints change at the same rate as all points when
l is decreased, as shown in Figure 2(C).

We next introduce a ‘segmental Lennard-Jones’ inter-
action potential

U = Kvol,6

(∫ 1

0

∫ 1

0
ds dt

1
r(s, t)6

)n6

− Kvol,4

(∫ 1

0

∫ 1

0
ds dt

1
r(s, t)4

)n4
. (24)

This expression has qualitative similarity to the famil-
iar 6-12 Lennard-Jones potential between two particles,
and can be tuned by choosing the four parameters Kvol,6,
Kvol,4, n4, and n6 to mimic interactions that have both
attractive and repulsive parts. For instance, computa-
tionalmodelling of depletion forces, which tend to aggre-
gate polymers together, may make use of an effective
attractive component in the polymer-polymer interac-
tion [36]. An example of a segmental Lennard-Jones
potential is illustrated in Figure 2(D) for the choices
Kvol,6 = Kvol,4 = 1 and n4 = n6 = 1/2 and for a perpen-
dicular configuration of the cylinders.

3.2. Determination of Kvol

Actual biopolymers can differ significantly in their diam-
eters, requiring that Kvol be tuned for particular biopoly-
mers. This choice can be made so that at the effective
diameter d∗ the typical interaction energy Ut (i.e. the
energy for some typical configuration of segments) is
equal to some energetic penalty for steric overlap Um of
the system:

Ut(d∗) = Um. (25)

Here we indicate how to use Equation (25) to deter-
mine Kvol for actin and microtubules which have been
modelled as chains of 100 nm long linear segments. The
radius of an actin filament is approximately 3.5 nm, and

Figure 3. Plots of the energy as a function of the separation dis-
tance are shown for different parameterisations and interaction
kernels. The red and blue curves are parameterised for actin using
the 1/r4 and 1/r6 kernel respectively, while the green and purple
curves are likewise paramaterised for microtubules. The dashed
vertical lines are drawn at d∗ for actin and microtubules, and
the intersection points indicate the enforcement of the condition
Ut(d∗) = Um where Um = 41 pN nm (horizontal dahsed line).

for a microtubule it is 12.5 nm. As a typical configuration
we take the two interacting segments to be aligned and
rotated by 45◦ with respect to each other. In Figure 3 we
show the result of using Ut(d∗) = Um to determine Kvol,
takingUm = 41 pNnm to be 10 times the thermal energy
(as kBT = 4.1 pNnm at room temperature). For actin
segments, this procedure gives Kvol = 4.6 × 106 pNnm3

for the 1/r4 kernel and Kvol = 4.4 × 108 pN nm5 for the
1/r6 kernel. For microtubule segments, this procedure
gives Kvol = 7.7 × 107 pNnm3 for the 1/r4 kernel and
Kvol = 7.7 × 1010 pNnm5 for the 1/r6 kernel. We note
that this parameterisation process also depends on the
chosen length of the cylindrical segments.

3.3. Sensitivity of Kvol to typical configurations

The parameterisation method described above has one
seemingly major ambiguity, which is how to determine
the typical configuration of the segments at which to
evaluate Ut(d∗). Fixing the position of one segment and
both segments’ lengths, 5 variables remain to specify the
other segment: the offset vectorC and the spherical coor-
dinates θ (inclination) and φ (azimuthal) of the unit
vector B̂. The dependence on the separation of aligned
cylinders has been discussed above. We next explore the
orientational coordinates θ and φ, setting

c1 = (−L/2, −l, 0)
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Figure 4. A surface plot of U as θ and φ are varied is shown
for the conditions described in the main text. The colours indi-
cate the energy, ranging from 0 pN nm (purple) to 50 pN nm (red),
the grey region corresponds to configurations in which the seg-
ments nearly overlap, and the inset illustrates the definition of the
spherical coordinates θ and φ.

c2 = (L/2, −l, 0)

c3 = (0, 0, 0)

c4 = (L sin θ cosφ, L sin θ sinφ, L cos θ).

The geometry of this set up is illustrated in the inset of
Figure 4.

In Figure 4, we show the energy U for L = 100 nm,
l = 10 nm, and Kvol = 4.6 × 106 pNnm3 as a function
of θ and φ. Evidently, U lies within a fairly small range
over most of the domain of θ and φ (with the exception
being where the cylinder nearly overlap). It can similarly
be shown that the degree of freedom corresponding to
sliding one cylinder in a direction parallel to the other
cylinder only affects the interaction energy to within an
order of magnitude. Therefore, we may conclude that the
parameterisation is not very sensitive to how the typical
configuration is chosen, and that reliable order of mag-
nitude estimates of Kvol can be obtained for a given d∗
and Um.

3.4. Comparison to Gay-Berne potential

Next, we compare the new integrated kernel expression
for the interaction energy between cylindrical objects,
Equation (1), to the widely used Gay-Berne poten-
tial which describes the interaction between anisotropic
ellipsoidal objects. The original Gay-Berne potential was
designed to be similar to a Lennard-Jones potential, hav-
ing both attractive and repulsive contributions, but for
comparison here we modify the original potential to be

Figure 5. Interaction energy profiles for the integrated 1/r4 ker-
nel potential (top panel, Equation (1)) and Gay-Berne potential
(bottom panel, Equation (A5)), and the are shown. In both pan-
els, the geometric aspect ratio κ is varied in increments of 5 from
1 to 31 (i.e. L is increased with d∗ fixed), as the colours are varied
from light blue to dark purple. The inset shows the set-up of the
two cylinders for κ = 21.

only repulsive and with an exponent of −4; we give
the formula for the Gay-Berne potential used here in
Appendix (Equation (A5)). We compare the interaction
energy profiles as a function of distance for two offset,
rotated cylindrical segments with variable aspect ratios.
Holding the diameters d∗ = 1 fixed, we change the cylin-
der lengths L = κd∗, where κ is the geometric aspect
ratio, and show that for large κ the Gay-Berne potential
deviates strongly from the desired power-law repulsion.
We use the following test case configuration, illustrated
in the inset of Figure 5: for each choice of L, the hori-
zontal offset (along their lengths) of two parallel, initially
aligned cylinders is chosen such that half of their lengths
overlap, and one cylinder is then rotated 45◦ around
around the line joining its midpoint and the other cylin-
der’s overlapping endpoint. The length of this line is then
varied to construct the interaction energy profile for this
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test configuration. The energy scale is fixed by setting
each energy to 1 at a distance of d∗. We display the results
in Figure 5.

We observe that for large values of κ , the Gay-
Berne interaction profile deviates significantly from
the expected power-law behaviour, exhibiting weakened
repulsion for l � d∗ and enhanced repulsion for l � d∗
compared to the integrated kernel interaction. On the
other hand, for κ = 1 the Gay-Berne profile and the
integrated kernel profile nearly coincide.

The need for a new potential to describe polymer
repulsion can be understood as arising from the fact that,
when modelling consecutive cylinders in a polymer as
ellipsoids, the potential energy is not uniform along the
polymer’s length. One can imagine a chain of sausage
links to represent this scenario. In the integrated kernel
interaction, however, the energy is uniform and there-
fore does not depend on how the polymer is discretised
into cylinders. This is an important physical feature to
preserve in computational modelling.

3.5. Timing of numerical approximation

Finally, we illustrate the gain in computational efficiency
from having an analytical result (Equation (11)) for the
integral in Equation (1) rather than a numerical approx-
imation, as is sometimes used in LAMMPS [32]. We
implemented both the analytical result and a numerical
scheme sampling the double integral at Nsample points
along each cylinder in compiled C code. The numerical
scheme approximates U as

U ≈ Kvol

N2
sample

Nsample∑
i,j=1

1

r
(

i
Nsample

, j
Nsample

)4 , (26)

where r(s, t) is given in Equation (9). For a single test
case of aligned cylinders rotated by 45◦ relative to each
other, we compared the energy and evaluation time for
the numerical scheme to the analytical counterpart as
Nsample was varied from 5 to 30. The result is displayed
in Figure 6. Once the number of sampling points is large
enough that the numerical approximation is acceptable
(Nsample ∼ 20), the numerical evaluation time is at least
10 times longer than the evaluation time of Equation (11).
We note that to obtain a numerical approximation to the
forces, the derivatives with respect to the cylinder points
ci can be brought inside the sum in Equation (27).

4. Conclusion

Our goal has been to clarify the derivation of the novel
excluded volume repulsion potential implemented in
MEDYANand to extend the derivation to other scenarios

Figure 6. The ratio of the numerically obtained energy U to the
analytical U∗ and the ratio of the numerical evaluation time t
to that of the analytical result t∗ are shown as the number of
sampling points Nsample is varied. The green shaded area indi-
cates where the agreement between U and U∗ is acceptable (i.e.
U/U∗ ≈ 1). The timing data is an average over 100 repetitions.

of interest. This overall approach to modelling repulsion
interactions based on integrating an interaction kernel
may be extended to other geometrical elements of finite
size, such as 2D faces or 3D volumes (see Ref. [37] for
an application to 2D faces). Despite the complexity of the
resulting expressions for the energy and forces, they have
the significant benefit of being analytical and avoiding
endpoint-based interactions, which have flat energy pro-
files that can allow the repelling objects to erroneously
overlap each other. On the other hand, these expres-
sions have the issue of being undefined for certain lower-
dimensional rare configurations which impedes their
usability in simulation.However, we have shownhow this
issue can be handled by re-deriving expressions using a
reduced number of variables. In addition, we described
how other types of interactions can be designed, such as
steeper repulsion and a segmental Lennard-Jones inter-
action, while still accounting for the finite dimensions
of the interacting objects. This potential could be use-
ful to model certain aggregating polymer systems such
as toroidal DNA [38,39]. The mathematical elaborations
presented here should enable other investigators to effec-
tively use these new potentials in their computational
studies of soft matter systems.
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Here we provide the full expressions of the interaction energy
using the 1/r4 interaction kernel in various types of cylinder
configurations. The meaning of the variables is provided in the
main text.
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×

⎛
⎜⎜⎝
(
ab + be − d2 − df

)
tan−1

(
−d−f√

ab+b(c+2e)−(d+f )2

)
√
ab + b(c + 2e) − (d + f )2

−
(
ab + be − d2 − df

)
tan−1

(
b−d−f√

ab+b(c+2e)−(d+f )2

)
√
ab + b(c + 2e) − (d + f )2

+
(a(b − f ) + d(e − d)) tan−1

(
e−d√

a(b+c−2f )−(d−e)2

)
√
a(b + c − 2f ) − (d − e)2

+
(a(f − b) + d(d − e)) tan−1

(
a−d+e√

a(b+c−2f )−(d−e)2

)
√
a(b + c − 2f ) − (d − e)2

+
tan−1

(
e√

ac−e2

)
(af − de)

√
ac − e2

+
tan−1

(
a+e√
ac−e2

)
(de − af )

√
ac − e2

+
tan−1

(
b−f√
bc−f 2

)
(be − df )√

bc − f 2

+
tan−1

(
f√
bc−f 2

)
(be − df )√

bc − f 2

⎞
⎟⎟⎠ (A1)

A.2. Coplanar cylinders

U = Kvol

4
(
AyBx − AxBy

)

×

⎛
⎜⎜⎜⎝

(
AyBx − AxBy

) 2(
Ay (Cx − Bx) + Ax

(
By − Cy

)) (
AyCx − AxCy

)
× (

ByCx − BxCy
)

+
(
AyBx − AxBy

) 2(
Ay (Cx − Bx) + Ax

(
By − Cy

)) (
AyCx − AxCy

)
× (
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)

+
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) (
A2
x + A2

y

)
(
AyCx − AxCy

)
2

−
tan−1

(
A2
x+CxAx+Ay(Ay+Cy)
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) (
A2
x + A2

y

)
(
AyCx − AxCy

)
2

−
tan−1

(
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) (
B2x + B2y
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(
ByCx − BxCy

)
2
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tan−1

(−B2x+CxBx+By(Cy−By)
ByCx−BxCy

) (
B2x + B2y

)
(
ByCx − BxCy

)
2

+
tan−1

(
AxBx+CxBx+By(Ay+Cy)

−AyBx−CyBx+AxBy+ByCx

) (
B2x + B2y

)
(
AyBx + CyBx − AxBy − ByCx

)
2

−
tan−1

(−B2x+AxBx+CxBx+By(Ay−By+Cy)
−AyBx−CyBx+AxBy+ByCx

) (
B2x + B2y

)
(
AyBx + CyBx − AxBy − ByCx

)
2

+
tan−1

(
Ax(Cx−Bx)+Ay(Cy−By)
Ay(Bx−Cx)+Ax(Cy−By)

) (
A2
x + A2

y

)
(
Ay (Bx − Cx) + Ax

(
Cy − By

))
2

−
tan−1

(
A2
x+(Cx−Bx)Ax+Ay(Ay−By+Cy)

Ay(Bx−Cx)+Ax(Cy−By)

) (
A2
x + A2

y

)
(
Ay (Bx − Cx) + Ax

(
Cy − By

))
2

⎞
⎟⎠
(A2)

A.3. Parallel cylinders

U = Kvol

2ξ
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)3
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x

(
tan−1
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(
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+ tan−1
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A.4. Colinear cylinders

U = Kvol

6ξ
(
A2
x + A2

y

)
2

(
− 1

ζ 2 + 1
(ζ − ξ)2

− 1
(ζ − ξ + 1)2

+ 1
(ζ + 1)2

)
(A4)

A.5. The Gay-Berne potential

The Gay-Berne potential is designed to generalise the familiar
Lennard-Jones interaction to geometrically anisotropic ellip-
soidal particles. Further generalisations to lower symmetry
interactions have also been constructed, but we assume here a
pair of identical radially symmetric ellipsoids repelling with a
1/r4 potential. The formulas given here are adapted from Ref
[40]. The interaction energy is written as

U(ûi, ûj, rij) = 4ε0ε(ûi, ûj, r̂ij)
(

σs

rij − σ(ûi, ûj, r̂ij) + σs

)4
.

(A5)
Here rij points from the centre of ellipsoid i to the centre of
ellipsoid j, ui points along the major axis of ellipsoid i and like-
wise for uj, the caret hats indicate unit vectors, and rij is the
magnitude of rij. σs represents the length of the minor ellipsoid
axis (the ‘diameter’), and σe represents the length of the major
axis (the ‘length’). The prefactor ε0 sets the energy scale. The
shape function σ(ûi, ûj, r̂ij) is

σ(ûi, ûj, r̂ij) = σs

(
1 − χ

2

(
(r̂ij · ûi + r̂ij · ûj)2

1 + χ ûi · ûj

+ (r̂ij · ûi − r̂ij · ûj)2
1 − χ ûi · ûj

))−1/2

, (A6)

where χ = κ2−1
κ2+1 and κ = σe

σs
. The interaction function

ε(ûi, ûj, r̂ij) is

ε(ûi, ûj, r̂ij)

= (
1 − χ2(ûi · ûj)2

)− 1
2ν

(
1 − χ ′

2

(
(r̂ij · ûi + r̂ij · ûj)2

1 + χ ′ûi · ûj

+ (r̂ij · ûi − r̂ij · ûj)2
1 − χ ′ûi · ûj

))μ

, (A7)

where χ ′ = k′1/μ−1
k′1/μ+1 , k

′ = εs
εe
, and εs and εe represent, respec-

tively, the depth of the potential well for the side-to-side
and end-to-end configurations of the two ellipsoids. The free
parameters of this energy are ε0, εs, εe, σs, σe, and the fitting
exponents μ and ν. For the comparisons done in Figure 5,
we take σs = 1, εe = εs = 1, μ = 2 and ν = 1 (following Ref.
[40]), and ε0 is chosen so that U = 1 when the separation is
d∗, as described in the main text. σe = κσs is varied to test the
effect of geometrical anisotropy.
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