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ABSTRACT

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An under-
standing of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters
is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters de-
pend on the properties of microscopic elements. In this work, we combine experiments and multiscale
modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments
and molecular motors to their microscopic properties, in particular motor processivity, speed, and
valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only
augments the contributions to nematic elasticity from excluded volume effects but dominates them.
By altering motor kinetics we show that a competition between motor speed and crosslinking results
in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament
crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking.
Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide
new insights for rationally engineering active materials.
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INTRODUCTION

Systems composed of active agents that locally break detailed balance can exhibit striking collective
behaviors that are inaccessible to assemblies that couple to energy sources in a nondirected fashion
(e.g., thermally) [1, 2]. These behaviors include directed collective motion, enhanced information
storage, giant number fluctuations, self-sorting, and motility-induced phase separation [3–6]. A
better understanding of active systems can suggest mechanisms in natural systems [7–9], enable
control of nonequilibrium pattern formation, and guide the design of new materials [10–13]. One
of the most well-studied classes of active materials is active nematics (also known as active liquid
crystals) [13, 14]. In nematics, elongated components (mesogens) interact locally through excluded
volume yielding a material that exhibits long-ranged orientational order while maintaining transla-
tional fluidity [15, 16]. The tendency of the mesogens to align gives a nematic an effective elasticity
that resists distortions and acts to align the field as a whole [2]. This tendency to align is opposed
by activity (i.e., mechanical work done on the individual elements of a system). Activity induces
structural distortions and flow in the nematic field leading to a dynamical steady state.

There are various ways to characterize structure in an active nematic. These include the spacing
of topological defects, the correlation length of the orientation of the mesogens (director field), and
the correlation length of the velocity or vorticity [17–19]. However, theory [17], simulation [18], and
experiments [20, 21] suggest that these quantities all scale identically with activity—i.e., for a given
set of conditions, active nematic dynamics are governed by a single length scale, ℓ. This length
scale arises from the balance of the elastic stress, K/ℓ2, where K is the elastic constant, with the
active stress scale, α, so that ℓ =

√
K/α [18]. While ℓ quantifies how much energy imparted by

activity is stored in distortions to the nematic field, the average flow speed of the nematic captures
how much energy is dissipated viscously. As such, by force balance, the average flow speed in a
nematic is expected to scale as v ∼ αℓ/η ∼

√
Kα/η, where η is the solvent viscosity [18]. Thus

exerting control over K and α affords control over the steady-state dynamics and structure of an
active nematic.

How exactly K and α relate to microscopic properties of the elements that make up active ne-
matics is not well understood. In active nematics composed of cytoskeletal elements—semiflexible
filaments, molecular motors, and crosslinkers—activity is generated when the molecular motors hy-
drolyze adenosine triphosphate (ATP) and slide pairs of filaments, giving rise to interfilament strain
and extensile force dipoles [3]. Biochemical regulation affords control of microscale mesogen prop-
erties and active stresses allowing for explicit tuning of hydrodynamic properties on a microscopic
scale. For example, in active nematics composed of actin filaments and myosin II motors, the elastic
constant was shown to depend on filament length [14, 20]. In nematics composed of microtubules
and kinesin, active stresses have been modulated by changing the concentration of ATP ([ATP])
available to motors. In this case, the impact of altering [ATP] was to affect the activity through
motor stepping speed and not the elasticity [21]. The motor employed in this and other studies of
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cytoskeletal active nematics (kinesin and myosin II filaments) have high processivities. That is, they
almost never detach from filaments before reaching their ends [22, 23]. Because a motor must link a
pair of filaments to generate extensile stress, one would expect that differences in filament binding
propensities lead to differences in force transmission capabilities. Indeed, filament crosslinking was
observed to impact local rigidity and force transmission in other cytoskeletal contexts [24]. However,
the roles of motor processivity and, more generally, crosslinking in active nematics have not been
explored to the best of our knowledge.

To address this gap, here we utilize synthetic myosin motors that range in their propensities for
binding filaments [25]. We tune processivity through both [ATP] and motor oligomerization state
(valency). We find that nematic speed depends nonmonotonically on [ATP], reflecting opposite
trends in filament strain and crosslinking with [ATP]. We find that crosslinking modulates the
elasticity, and we introduce a simple model that accounts for the observed trends. Consistent with
the model, we show that the addition of the passive crosslinker filamin also modulates elasticity and
in so doing alters the energetic balance in active flows. Our results reveal a previously unappreciated
connection between activity and elasticity through motor proteins and show how these quantities
can be tuned independently through molecular composition.

RESULTS

To probe how the microscopic interactions between a motor and filament control nematic structure
and dynamics, we pair in vitro experiments with multiscale modeling. Experimentally, we can alter
processivity by changing the availability of ATP or motor valency. Specifically we employ synthetic
myosin motors that consist of the enzymatic head from Chara myosin XI, which is linked via a
flexible linker to an engineered multimerization domain [25]. By utilizing different multimerization
domains, either engineered GCN4 coiled-coils [26] or de novo two-helix hairpins [27], which form
clusters of well-defined sizes, we are able to query clusters with identical enzymology but with three,
four, or eight heads (Fig. 1A). In the high ATP limit the Chara myosin XI head has a low duty
ratio, meaning it spends less than half of its catalytic cycle bound to an actin filament [28–30].
Because this duty ratio depends on [ATP] motor velocity and the distance a motor travels before
dissociating (run length) on single filaments also depend strongly on [ATP]: at [ATP] = 10 µM,
tetrameric clusters have single-filament velocities of 0.5 µm s−1 with run lengths of 4 µm, while at
[ATP] = 500 µM, the velocity is 10 µm s−1, and the run length is 0.5 µm (Fig. S1) [25].

A microscopic model relates motor properties to hydrodynamic parameters.

To understand how the activity depends on [ATP] in our system and in turn to make predictions
for the nematic speed and correlation length through the relations v ∼

√
Kα and ℓ ∼

√
K/α, we

developed a microscopic model of motors with variable valencies. Because activity is generated
via filament pair strain rate and not merely motor speed, this model focuses on the calculation of
filament strain rate, ε. We then use this quantity in the scaling relation α ∼ εβ, which was previously
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observed to hold for active nematics composed of microtubules and kinesin motors [21], given the
known dependence on [ATP] of the speed of single kinesin motors walking on single filaments [22].

Building upon a previous approach [31], we coarsely approximate the catalytic cycle of each
head using three states: (1) unbound from the filament with ATP, (2) bound to the filament in the
post-powerstroke state with ADP, and (3) bound to the filament without a nucleotide (Fig. 1B).
Transitions between these states are irreversible. An essential idea is that a head with ATP has low
affinity for the filament. As a result, the transition from state 1 to state 2 requires ATP hydrolysis.
Similarly, the head quickly releases the filament once it exchanges ADP for ATP, and the rate of
the transition from state 3 to state 1 is linearly dependent on [ATP]. We simulate the cycle for
each head independently. That is, if there are n heads in a simulation, there are 3n states to keep
track of. Because the heads are independent and rates are irreversible, there are only n allowed
transitions at any time. To evolve the system forward, we perform the Gillespie algorithm over all
possible transitions at a given time [32]. This scheme allows us to simulate clusters of independent
heads with any valency.

We assume that the joint between the lever arm and the multimerization domain is flexible
and that the motor prefers to bind in its least strained position. Thus, when a head undergoes a
transition from state 1 to state 2 and binds to a filament, we draw its position from the normal
distribution N(x(t)+s/2, s/2). Here, x(t) is the position of the multimerization domain that couples
independent heads together and s is the average step length of a motor. On each filament, we take
x(t) to be a distance s/2 ahead of the rearmost bound head. Assuming fast diffusion relative
to binding rates, when a motor can bind multiple filaments we choose between them randomly
with equal probability. When a transition occurs, x(t) is reevaluated. We calculate the average
velocity of a motor on a filament as the total distance a motor travels divided by the final time
in the simulation. For pairs of filaments, strain is only recorded if motion occurs while the motor
crosslinks the two filaments [2, 33]. We compute the filament strain rate, ε, by dividing the total
strain by the final time in the simulation. We also compute the probability of crosslinking, Pcl, as
the fraction of time that both filaments are bound simultaneously.

We scan the three rate constants (k12, k23, k31) to identify values that yield average single-
filament speeds and run lengths (i.e., the length traveled between the first time a head is bound to
the last time) that reproduce measured trends and approximately correspond to measured values
from experiments with tetrameric clusters (Fig. S1) [25]. Two filament results, ε and Pcl, for a
tetrameric motor cluster are shown in Figs. 1C,D. These simulations show that Pcl, decreases while
ε increases with [ATP].

As described above, we use the computed strain rate to estimate the activity by α ∼ εβ. We
use β = 0.1 to account for the flexibility of the synthetic myosin XI motor [25] (for comparison,
values ranging from 0.31 to 1.54 are considered for kinesin in [21]). Substituting the resulting α

into v ∼
√
Kα and ℓ ∼

√
K/α, we obtain an increase in v and a decrease in ℓ with [ATP], for fixed
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Figure 1: [ATP] and activity can be related through a microscopic model. (A) Schematic
of the experiments. We study synthetic motors with controlled numbers of myosin XI enzymatic heads
that bind and slide actin filaments of length 2 µm at an oil-water interface. Due to the polarized
binding of a dye to actin filaments, regions with filaments oriented vertically in the laboratory frame
appear brighter than those oriented horizontally [14, 20]. The experimental images are analyzed by
optical flow [34] to estimate the horizontal and vertical components of the velocity at each pixel. From
the velocity field, we calculate the average flow speed, vrms, and average vortex radius ℓvort as in [35].
(B) We simulate the catalytic cycle of myosin XI with three states: (1) unbound with ATP (top),
(2) bound with ADP (right), and (3) bound while nucleotide free (left). (i) Rate constants are tuned
based on prior measurements of speed and processivity on single filaments (Fig. S1). (ii) We extend
the simulation to two filaments as described in the text and compute the filament extension rate, ε,
and the probability of crosslinking, Pcl, as described in the text. These quantities are used to compute
the nematic speed and correlation length as v =

√
Kα and ℓ =

√
K/α, respectively. (C) Pcl and (D) ε

from two-filament simulations for a cluster with four heads. (E) Normalized v (magenta) and ℓ (black)
for activity derived from (D) assuming constant elasticity, K = 0.001.

K (Fig. 1E).

Nematic elasticity depends on the probability of crosslinking.

To test our predictions, we use nematics composed of short (2 µm) actin filaments labelled with
tetramethylrhodamine (TMR) and synthetic motors with Chara myosin XI enzymatic heads [25].
We form nematics by crowding the actin filaments to a surfactant stabilized oil-water interface
through depletion forces imposed by methyl-cellulose (Fig. 1A). Once the nematic is formed, we
add 120 pM tetrameric motors to the sample to introduce activity. We image the sample with
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time-lapse fluorescence microscopy at a rate of 0.5 frames/s for 100 s. Because of the polarization
of TMR dye along filaments and the polarization of our excitation laser, brighter (darker) patches
represent filaments oriented vertically (horizontally) in the imaging plane [14, 20]. Given the video
microscopy data, we estimate the nematic velocity at each pixel using optical flow [34], as described
in Materials and Methods.

The results for one series of [ATP] are shown in Fig. 2. As we expected, the length scale ℓvort,
calculated using correlated displacement velocimetry, decreases as [ATP] increases (Fig. 2A,C) [36].
We use ℓvort to quantify length scale because it agrees well with the velocity correlation length but
requires fewer assumptions to measure [18, 35] (Fig. S2). While ℓvort decreases with [ATP], the
root mean square flow velocity, vrms, exhibits a nonmonotonic dependence on [ATP], with a peak
at 50 µM (Fig. 2A,B). This behavior contrasts with the model prediction (Fig. 1E), suggesting that
something is missing from the model.

Given previous work in which material elasticity depends on the concentration of crosslinkers [37,
38], we reasoned that the elastic constant K should depend (linearly) on the effective concentration
of crosslinkers, ce:

K ∼ K0 + κce, (1)

where K0 is the baseline nematic elastic modulus that arises from excluded volume interactions
between filaments [37, 39], and κ represents the energetic penalty for filament deformation at a given
concentration of crosslinker. Here, because the only crosslinkers are motors, we expect ce = cmPcl,
where cm is the concentration of motors which is taken to be 1 throughout this work. Using
(1) for K with Pcl from the simulation in the scaling relations v ∼

√
Kα and ℓ ∼

√
K/α, we

obtain nonmonotonic v and decreasing ℓ with increasing [ATP] (Fig. 2D,E). Physically, there is
a competition between the tendency for increased [ATP] to increase motor speed, resulting in a
higher strain rate, and to reduce motor binding, resulting in lower Pcl. In the case of kinesin, the
latter tendency is negligible due to biochemical coupling and thus was not necessary to consider in
previous studies [21, 22].

The peak in v becomes more pronounced as the second term in (1) becomes large compared with
the first (Fig. 2D). To understand how a peak in v could arise from these scaling relationships, we
differentiate v =

√
Kα with respect to [ATP] and solve for the maximum by setting the resulting

expression equal to zero. This yields

αpeak = −Kα′

K ′ , (2)

where αpeak is the activity that corresponds to the maximum velocity, and K ′ denotes a derivative
with respect to [ATP]. Note that because Pcl always decreases with [ATP], K ′ ≤ 0. For a fixed
dependence of the strain rate and thus the activity on [ATP], larger κ results in larger K ′ relative
to K and thus smaller αpeak (i.e., αpeak at lower [ATP]). Consistent with this reasoning, the peak
in Fig. 2D moves to the left as κ increases. It is also worth noting here that changes in β affect the
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balance in this equation as well. If we increase β, the nematic speed increases monotonically with
[ATP], similar to a decrease in κ (Fig. S3). As such we set κ = 10K0 and β = 0.1 for the rest of
this work.

Note that the variations in v and ℓ are smaller than in experiment. This is a reflection of our
simplifying assumptions in this model. On a hydrodynamic scale, we assume that turbulent scaling
relations hold at all concentrations, even though we expect them to only hold above a critical [ATP].
Furthermore, our assumption that K is linear in Pcl is likely an oversimplification. Microscopically
we neglect complex coupling [40] and correlated binding [31] in our motor stepping model, both
of which would reduce Pcl at high [ATP]. The model can readily be tuned to adjust for these
assumptions, but we do not pursue that here for simplicity.

Motor valency tunes nematic dynamics.
We now consider how the motor valency (i.e., the number of heads in a cluster) affects the structure
and dynamics of the active nematics. Simulations of motors on single filaments show that increasing
the motor valency reduces the speed and increases the processivity, consistent with experimental
measurements [25] (Fig. S4). These trends shift the dependence of ε on [ATP] in simulations of
motors on two filaments such that higher [ATP] is required to reach the same relative extension
rate (Fig. 3A). Higher valency also leads to a greater probability of crosslinking across all ATP
concentrations and a smaller relative decrease in crosslinking across the range of [ATP] that we
consider (Fig. 3B). These microscopic trends lead to a valency-dependent shift of the peak in v to
higher [ATP] (Fig. 3C, dotted line) and a decrease in the relative change in ℓ between low and high
[ATP] (Fig. 3D).

Experimentally, we utilize the control afforded by the motor’s multimerization domain to con-
sider clusters with n = 3, 4, or 8 heads. We take into account the contributions of cluster valency
and total number of motor heads by considering trimeric and tetrameric motor clusters at 120 pM
and octameric motor clusters at 60 pM (Fig. 3E). This allows us to separate the contributions from
cluster valency and the total head number in the system. We find that the peak in vrms is indeed
dependent on cluster valency and shifts to higher [ATP] as valency increases (Fig. 3E). This trend
holds across multiple independent series (Fig. S5). In fact, the shift that we find in experiment
closely matches that predicted by our simulations (Fig. 3C). Furthermore, as valency increases, ℓvort

at a given [ATP] increases (Fig. 3F). Thus we can access different ATP response regimes in these
nematics by tuning motor valency. However, separating the contributions of Pcl and ε in these
experiments is not possible as these quantities vary simultaneously as valency changes (Fig. 3A,B).

Crosslinking modulates the efficiency of nematic energy transfer.
To separate the effects of crosslinking and strain rate, we consider the effects of adding the passive
crosslinker filamin (FLN). Here, we use active nematics driven by trimeric motors because they have
the lowest baseline level of crosslinking. To incorporate the contribution from passive crosslinkers in
the model, we simply add a contribution to the effective concentration of crosslinkers: ce = cmPcl+cp,
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Figure 2: Motor crosslinking modulates nematic elasticity. (A, top row) Polarized fluorescence
micrographs of nematics (gray scale) driven by tetrameric motor clusters from [25] with [ATP] of 6,
40 or 100 µM (concentration of motors is 120 pM). (A, bottom row) Velocity fields estimated from
optical flow. Scale arrows are 3 µm/s. (B) Average flow speed, vrms, for the experiments in (A) and
similar ones with [ATP] of 16 µM. Error bars are standard deviations of speed over 100 s of steady-state
activity. (C) Critical vorticity length scale, ℓvort, measured as in [35], for the same experiments as in
(B). Error bars are standard deviations on 5 sets of 5 non-overlapping frames. (D and E) Normalized
v and ℓ for tetrameric motors calculated from the model scaling with various ratios of κ to K0. All
calculations presented subsequently use κ = 10K0 and β = 0.1.

where cp is the concentration of passive crosslinkers. Otherwise the model is the same (Fig. 4A).
This model predicts that the addition of passive crosslinkers leads to a shift in the peak in v to
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Figure 3: Motor valency tunes nematic dynamics. (A and B) Normalized ε and Pcl calculated
for clusters of variable valency. (C and D) Normalized v and ℓ from model scaling. The black dotted
line in (C) traces the location of the peak in nematic speed; symbols show the positions of peak speeds
in (E). Brighter colors are higher values. (E and F) vrms and ℓvort for a range of ATP concentrations
and cluster valencies. Error bars are standard deviations on 5 sets of 5 non-overlapping frames from a
single experiment. Independent replicates are found in Fig. S5.

higher [ATP] (Fig. 4B). We note that this shift is different from that in response to changing the
valency in that it occurs for constant ε and Pcl. Experimentally, we find that adding crosslinker to
these samples yields a dramatically longer length scale as is expected from increased K (Fig. 4C,E).
Furthermore, we find that increased concentrations of passive crosslinker do indeed lead to a shift
in the peak in vrms to higher [ATP] (Fig. 4D,E). These observations support our model, in which
crosslinking linearly increases the elastic modulus. In turn, the shift in vrms can be understood in
terms of (2). Previously we discussed the case of increasing κ, which increases K ′, shifting αpeak to
lower [ATP]. By contrast, adding passive crosslinkers leaves K ′ unchanged while increasing overall
K, shifting αpeak to higher [ATP].
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As noted before this shift is accompanied by an increase in ℓvort and vrms (Fig. 4C,D). Thus for
a given [ATP] the nematic features fewer defects but moves faster (Fig. 4E). These changes occur
without a substantial change in ε, suggesting that shifts in K affect how the activity supplied by
motors manifests in nematic dynamics. Indeed, lattice Boltzmann simulations show that in the
high activity regime total energy in the nematic actually increases with K (Fig. S6). This indicates
a crucial role for filament crosslinking in determining the efficiency of energy transfer from motor
stress into active nematic motion.

CONCLUSIONS

In this work we showed that crosslinking has a profound effect on active nematic dynamics through
elasticity. Previous work with high processivity motors focused on the motors’ role in activity
despite clues to their role in elasticity from machine learning [41] and experiments in the low [ATP]
limit [21]. Our investigation here of active nematics with low processivity motors revealed that
reduced filament crosslinking at high [ATP] leads to reduced nematic elasticity and a nonmonotonic
dependence of nematic speed on [ATP]. Indeed, we find that the contribution to elasticity from
crosslinking dominates that from excluded volume interactions. We expect this to be the case even
in cytoskeletal active nematics in which crosslinking is constant across [ATP], as in active nematics
composed of microtubules and kinesin motors [21, 22].

Our results suggest that exquisite control over active nematics dynamics can be achieved through
the choice of molecular composition. Increasing motor valency affects both the activity and the elas-
ticity due to the effects on both the strain rate and filament crosslinking. Adding passive crosslinkers
in principle allows one to tune just the elasticity. That both motors and crosslinkers affect elasticity
has long been appreciated for actin gels [42, 43]. Transient crosslinkers have also been shown to
tune viscoelastic properties in fluid actin droplets [44, 45]. Our results suggest that the degree
that motor proteins dictate elasticity can be tuned by their physical and biochemical properties.
It is thus interesting to speculate that the fantastic diversity of naturally occurring motors and
crosslinkers reflects in part evolutionary pressures to achieve different materials properties.

Our study is a step toward quantitatively linking hydrodynamic parameters of active materials
to microscopic properties. How transferable such relations may be is an open question. For example,
even though active nematics composed of bacteria can be described in the hydrodynamic limit with
similar scaling laws, activity is generated by microscopic mechanisms that are distinct from the
active nematics considered here [9]. As a result, the characters of their force dipoles may also be
distinct, despite both being extensile. While this suggests that it will be necessary to go beyond
scaling relations to characterize active materials fully, it is also an opportunity for tailoring active
materials with unique properties.
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Figure 4: Microscopic crosslinking alters nematic energy distribution. (A) Normalized ε
and Pcl (inset) calculated for trimeric motors. (B) Normalized v from model scaling. (C and D) vrms
and ℓvort measured for trimeric driven nematics with filamin (FLN) added as indicated. (E) Polarized
fluorescence micrographs (gray, top row) with corresponding flow fields (red arrows, bottom row) for
trimeric motors at 100 µM ATP with FLN added as indicated. Scale arrow is 3µm/s.
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MATERIALS AND METHODS

Experimental Procedures

Protein Purification

Monomeric actin was purified from rabbit skeletal muscle acetone powder (Sigma-Aldrich, St. Louis,
MO) as described previously [46] and stored in G-buffer [2mM Tris pH 8, 0.2mM ATP, 0.5mM
DTT, 0.1mM CaCl2, 1mM NaN3, pH to 8]. Actin was labelled with Tetramethylrhodamine-6-
maleamide (TMR; Life Technologies, Carlsbad, CA). F-Actin Capping Protein was purified as
described previously [47] and stored in CP buffer [10mM Tris pH 7.5, 40mM KCl, 0.5mM DTT,
0.01% NaN3, 50% Glycerol].

Cloning and purification of motor constructs

The tetrameric motor construct CM11CD7462R∼1R∼TET is described in [25]. Motor constructs
were assembled from gene fragments encoding the Chara corallina myosin XI motor domain (residues
1–746), Dictyostelium α-actinin (residues 266–502 for the lever arm and residues 266–388 for the
flexible linker), a multimerization domain, and a C-terminal HaloTag and Flag Tag (DYKDDDDK).
The tetrameric motor construct contains the GCN4 leucine zipper variant p-LI as the multimer-
ization domain, which forms a parallel tetrameric coiled-coil [26]. In the trimeric construct, the
multimerization domain was replaced with the GCN4 variant p-II, which forms a coiled-coil trimer
rather than a tetramer [26], as previously described for similar constructs [25]. To create the oc-
tameric construct, the tetramerization domain was replaced with a de novo two-helix hairpin that
was designed to assemble into a water-soluble octameric pore (WSHC8 from [27], PDB 6O35) and
the Halotag is N-terminal to the motor. Constructs were cloned into the insect expression vector
pBiEx-1.
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For protein expression, plasmids were directly transfected into Sf9 cells as described previously
[48]. Purification was performed as described in [48] and [49]. Briefly, proteins were purified using
anti-Flag resin and labeled with Alexa Fluor 660 HaloTag Ligand (Promega). Proteins were eluted
into storage buffer containing glycerol and then immediately flash-frozen in small aliquots and stored
at –80◦C until use.

Assay Conditions

Actin filaments were polymerized at a 1:10 labelling ratio and a concentration of 2 µM in a 50
µL polymerization mix. This mix contained 1X F-buffer [10 mM imidazole, 1 mM MgCl2, 50
mM KCl, 0.2 mM egtazic acid (EGTA), pH 7.5] with each of the concentrations of ATP studied.
No additional MgCl2 was added with ATP. To minimize photobleaching, an oxygen scavenging
system (4.5 mg/mL glucose, 2.7 mg/mL glucose oxidase (catalog no. 345486, Calbiochem, Billerica,
MA), 17000 units/mL catalase (catalog no. 02071, Sigma, St. Louis, MO) and 0.5 vol. % β-
mercaptaethanol was added. Actin filaments were crowded to the surface by including 0.3% w%
400 cP methylcellulose in the polymerization mix. Capping protein was first thawed on ice, then
diluted to 500 nM in 1X F-buffer, and added at a final concentration of 30 nM in the mix. This
polymerization reaction was allowed to proceed for one hour on ice before it was added to the
imaging chamber.

The imaging chamber was created by first rinsing a small glass cloning cylinder (catalog no.
09-552-20, Corning Inc.) with ethanol and then attaching it to a silanated glass coverslip with
two-part epoxy. To prevent the actin from sticking and maintain fluidity, the coverslip was coated
with a thin layer of Novec 7500 Engineered Fluid (3M, St. Paul, MN) that included PFPE-PEG-
PFPE surfactant (catalog no. 008, RAN Biotechnologies, Beverly, MA) at 2% w/v before the
polymerization mix is added. The mixture was allowed to sit in the sample chamber for about 30
min before imaging to allow for the formation of the nematic.

The sample was imaged on an Eclipse-Ti inverted microscope (Nikon, Melville, NY) in confocal
mode utilizing a spinning disk (CSU-X, Yokagawa Electric, Musashino, Tokyo, Japan) and a CMOS
camera (Zyla-4.2 USB 3; Andor, Belfast, UK). Experiments were imaged at one frame every 2 s.

Data analysis

Flow fields were calculated between every two frames from time lapse images with optical flow using
the Classic+NL-fast method [34, 50]. This method is based on the classic Horn–Schunck method
which minimizes an objective function penalizing intensity differences between subsequent frames
(the data term) as well as enforcing smoothness in the estimated field. Flow is estimated at various
spatial scales iteratively to capture first global and then local motion. The optical flow code was
obtained from https://cs.brown.edu/people/mjblack/code.html.

Average flow speed v was calculated from the N vectors, ui, as v =
∑

|ui|/N . The velocity
correlation length quoted in Figure S2 was calculated as the distance r at which the velocity auto-

13



correlation function Cuu(r) = ⟨ui(0) · uj(r)/|ui||uj|⟩ reaches 1/e, where the average is over all pairs
(i, j) and e is Euler’s number.

ℓvort was calculated with the method of correlated displacement fields, as described in [35].
Briefly, the normalized cross correlation is measured in two dimensions between the vorticity field
ν and the velocity field u. This procedure effectively measures the response of the nematic to a
unit vortical perturbation at the origin. To extract a length scale from this response, the azimuthal
average of the correlation field is taken. This average results in a one dimensional function with
a single maximal extreme. ℓvort is the distance r at which this maximum occurs. This length
scale has been shown in active nematics to be equal to the average radius of a vortex in the flow
field [35]. Error for this method was calculated by measuring ℓvort over 5 separate non-overlapping
sets of frames from the 100 s of steady-state data considered in vrms. The code is available at
https://github.com/Gardel-lab/ResponseFunction.

Motor Stepping Model

The code to run an analyze the myosin stepping model described in Results is available at
https://github.com/Gardel-lab/myosin_stepping_model.

Lattice Boltzmann Simulations

Simulations of active nematic hydrodynamics were performed using a custom Julia implementation
of the hybrid lattice Boltzmann algorithm [51, 52]. The simulated equations of motion are the
same as those detailed in [13, 41]. The simulation domain consists of 400×400 lattice points in
two dimensions with periodic boundary conditions. The turbulent state was generated by initially
perturbing the system and evolving for 15, 000 steps, and then data was collected every 50 steps
for another 15, 000 steps. For each condition we ran 5 independent trials using different random
seeds for the initial perturbation. We used the following parameters (in lattice units): a collision
time τ = 1.5 (corresponding to viscosity η = 1/3), a flow-alignment parameter ξ = 0.7, a rotational
diffusion constant Γ = 0.13, and polarization free energy coefficients of A0 = 0.1, U = 3.5, leading
to an equilibrium nematic polarization magnitude of q = 0.62. The elastic constant K ∈ [0, 0.1]

and activity coefficient α ∈ [0, 0.01] (where positive α corresponds to extensile activity) were varied
to generate the results shown here.
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SUPPLEMENTAL FIGURES

Figure S1: Simulations reproduce single filament velocity and run length trends. Single
filament motor velocity (blue) and single filament run length (black) from experiments (dashed lines)
and simulaitons (solid lines) over a range of ATP concentrations. The final rates we compute after
10,000 tuning steps are 1821 s−1, 932 s−1, 6 s−1µM ATP.
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Figure S2: ℓvort robustly captures nematic length scale. Comparison of ℓvort as calculated in
[35] and the traditional velocity correlation length — Cvv = 1/e — for nematics driven by 120 pM
tetramers (A) and 50 pM octamers (B). Errorbars are averages over five separate frames for Cvv and
five 10s snippets for ℓvort.
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Figure S3: Strong activity coupling decreases nonmonotonicity in tetrameric driven ne-
matics. v (A) and ℓ (B) from scaling predictions for different coupling exponents β.
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Figure S4: Motor velocity and run length are cluster valency dependent phenomena.
Single filament motor velocity (A) and single filament run length (B) measured from simulation for
clusters with 3,4, or 8 heads per cluster.
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Figure S5: Peak shift is robust across days and motor concentrations. vrms for independent
replicates of oligomerization data at 60 pM (A) or 120 pM motor clusters. All data are different from
those in the text except for the octamers in (A) which are included as a reference. Error bars are
standard deviations of vrms over 100 s of steady-state activity.
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Figure S6: Nematic elasticity increases energy in the nematic. Elastic (black) and kinetic
(red) energy for nematics in lattice Boltzmann simulations with constant α = 0.01 across a range of K.
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